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1 Introduction

In this survey, we explore the fascinating interplay between number theory, geometry, and
dynamical systems. To set the stage, we begin by recalling a classical result from analytic
number theory—the Prime Number Theorem—which describes the asymptotic distribution
of prime numbers. This theorem, a cornerstone of number theory, naturally leads us to
examine analogous asymptotic counting problems in geometry, particularly the enumeration
of closed geodesics on hyperbolic surfaces.

Several key works form the backbone of our approach. Mirzakhani’s groundbreaking
study [6] established deep connections between the asymptotic growth of simple closed
geodesics on hyperbolic surfaces and the geometry of moduli spaces, while Arana-Herrera [1]
provides a modern ergodic-theoretic perspective on counting problems that range from prim-
itive integer points to simple closed curves. Foundational background on surface topology
and mapping class groups is supplied by Farb and Margalit’s A Primer on Mapping Class
Groups [4] as well as Martelli’s An Introduction to Geometric Topology [5]. In addition,
comprehensive treatments of hyperbolic geometry and its spectral theory are available in
Ratcliffe’s Foundations of Hyperbolic Manifolds [7], Borthwick’s Spectral Theory of Infinite-
Area Hyperbolic Surfaces [2], and Dal’Bo’s work on geodesic and horocyclic trajectories [3].

By synthesizing ideas from these sources, our survey aims to illustrate how techniques
from number theory and dynamical systems can be adapted to study the geometry of hy-
perbolic surfaces and the asymptotic behavior of their closed geodesics.

The Prime Number Theorem and Asymptotic Notation

One of the crown jewels of analytic number theory is the Prime Number Theorem. Recall
that if π(N) denotes the number of prime numbers less than or equal to N , the Prime
Number Theorem asserts that

π(N) ∼ N

log(N)

as N → ∞. Here, the notation
f(N) ∼ g(N)
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means that

lim
N→∞

f(N)

g(N)
= 1.

In other words, for large N the ratio of π(N) to N/ log(N) becomes arbitrarily close to 1.
This theorem is a profound statement about the distribution of primes among the integers
and is usually proved using techniques from complex analysis and analytic number theory.

1.1 Proofs of Quotient Properties of Γ\H
1.1.1 Statement 1: If Γ is torsion-free, then Γ\H is smooth

Proof:

• Free and Properly Discontinuous Action:
Recall that a group Γ acting on a manifold M (here, M = H) is said to act freely if
no nontrivial element of Γ fixes any point of M . If Γ is torsion-free, then for every
nonidentity γ ∈ Γ, the equation

γ(z) = z

has no solution in H. Therefore, the action of Γ on H is free.

• Local Quotient Structure:
A discrete group of isometries (in our case, a Fuchsian group) acts properly discontin-
uously on H. This means that for any point z ∈ H, there exists a neighborhood U of
z such that γ(U) ∩ U = ∅ for all γ ∈ Γ \ {id}. Hence, the projection

π : H → Γ\H

is a covering map. Since the action is free, every point in the quotient has a neighbor-
hood that is diffeomorphic to an open set in R2.

• Conclusion:
Because the local charts are given by open subsets of R2 (with no “twisting” coming
from nontrivial isotropy), the quotient Γ\H is a smooth surface (i.e., a smooth 2-
manifold).

1.1.2 Statement 2: If Γ has elliptic elements, then the quotient Γ\H is an orb-
ifold (with singular cone points)

Proof:

• Elliptic Elements and Fixed Points:
An element γ ∈ Γ is called elliptic if it has finite order. Such an element fixes some
point z0 ∈ H. That is, there exists a nontrivial γ ∈ Γ and a point z0 such that

γ(z0) = z0.

Hence, the action of Γ is not free: the stabilizer (isotropy group) of z0 is a nontrivial
finite cyclic subgroup of Γ.
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• Local Model for the Quotient Near a Fixed Point:
By the general theory of group actions, if a finite group G acts linearly on R2, then a
neighborhood of the origin in R2 quotiented by this action is homeomorphic to R2/G.
In our case, near a fixed point z0, the quotient Γ\H is modeled on R2/Zn (for some
n > 1), which is not a smooth manifold—it is an orbifold chart with a cone point (a
singular point with cone angle 2π/n).

• Conclusion:
Therefore, when Γ contains elliptic elements, the quotient Γ\H is not a smooth manifold
but rather an orbifold, with the images of the fixed points (under the projection π)
appearing as singular cone points.

1.1.3 Statement 3: Hyperbolic elements produce closed geodesics via their in-
variant axes

Proof:

• Properties of Hyperbolic Elements:
A hyperbolic element γ ∈ Γ has the following properties:

– It has two distinct fixed points on the boundary ∂H.

– It possesses a unique invariant geodesic A (called the axis of γ) in H.

– The action of γ on A is by translation: there exists a constant L > 0 (the
translation length) such that for every point z ∈ A,

d(z, γ(z)) = L.

• Quotienting the Axis:
Consider the projection

π : H → Γ\H.

Since A is invariant under the cyclic subgroup ⟨γ⟩ generated by γ, the set of points
{γn(z) : n ∈ Z} for any z ∈ A is exactly the orbit of z under ⟨γ⟩. The geodesic A
is “wrapped up” under the identification induced by ⟨γ⟩ and its projection π(A) is a
closed curve in Γ\H.

• Closed Geodesic:
Because A is a geodesic in H and γ acts by a constant translation along A, the pro-
jection π(A) is a closed geodesic in the quotient. In many cases (for example, if the
geodesic does not self-intersect), this closed geodesic is simple.

• Conclusion:
Thus, every hyperbolic element γ produces a closed geodesic in Γ\H via its invariant
axis A.
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1.1.4 Summary

1. Torsion-Free Γ: The action is free and properly discontinuous, so Γ\H is a smooth
manifold.

2. Elliptic Elements: Their fixed points lead to nonfree actions. Locally, the quotient
looks like R2/Zn (a cone point), so the quotient is an orbifold with singularities.

3. Hyperbolic Elements: They have invariant axes along which they translate by a
fixed positive length, so the quotient of such an axis is a closed geodesic in Γ\H.

Geometric Analogues: Closed Geodesics on Hyperbolic Surfaces

It turns out that similar counting problems occur in a geometric setting. To explain this,
we first introduce the concept of a hyperbolic surface. A hyperbolic surface is a two-
dimensional Riemannian manifold whose geometry is modeled on the hyperbolic plane H2

(a non-Euclidean space of constant negative curvature, usually normalized to −1). One may
think of H2 as the upper half-plane

{z ∈ C | Im(z) > 0}

with the metric

ds2 =
dx2 + dy2

y2
.

A closed geodesic on a hyperbolic surface X is a curve that is both geodesic (locally
the shortest path between any two points on it) and closed (its endpoints coincide). Such
geodesics can be primitive or non-primitive. A closed geodesic is said to be primitive if it
is not obtained by repeatedly traversing a shorter geodesic. For example, if γ is a closed
geodesic and γn denotes the curve that follows γ n times consecutively, then γn is not
primitive (unless n = 1).

On Closed, Simple, and Primitive Geodesics and Their Group-
Theoretic Interpretation

In our previous discussion, we considered a hyperbolic surface

X = Γ\H2,

where Γ is a discrete subgroup of PSL(2,R). For simplicity, we often assume that Γ is torsion-
free so that every nontrivial element is hyperbolic. In this setting, every nontrivial element
of Γ acts by translating along a unique geodesic (its axis) in H2, and the displacement length
(i.e., the distance moved along this axis) coincides with the length of the closed geodesic on
X obtained by projecting the axis.

Before delving into the details, we now introduce and clarify some fundamental defini-
tions.
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Aspect Prime Geodesic Theorem Mirzakhani’s Theorem

Objects
Counted

Primitive closed geodesics on a
hyperbolic surface (these may
have self–intersections).

Simple closed geodesics (without
self–intersections) on a
hyperbolic surface.

Growth Rate Exponential growth: roughly
eT

T
for geodesics of length ≤ T .

Polynomial growth:
approximately c(S)L6g−6+2n for
a surface of genus g with n
boundaries/cusps and length
≤ L.

Asymptotic
Formula

π(T ) ∼ eT

T
as T → ∞, with

constants determined by the
spectral data.

N(L) ∼ c(S)L6g−6+2n as
L→ ∞, where c(S) depends on
the geometry of the surface S.

Underlying
Techniques

Spectral theory, the Selberg
trace formula, and methods
analogous to those in the Prime
Number Theorem.

Ergodic theory, hyperbolic
geometry, Weil–Petersson
volume computations, and
dynamical techniques (e.g.,
earthquake flow).

Motivational
Analogy

Closed geodesics are viewed as
the geometric analogues of prime
numbers.

Although simple geodesics might
be thought of as “primes” under
topological constraints, their
counting is much sparser.

Historical
Context

Originated from mid–20th
century work by Selberg,
Margulis, and others.

Emerged in the early 2000s
through Maryam Mirzakhani’s
work, which contributed
significantly to our
understanding of moduli spaces.

Scope &
Applications

Fundamental in spectral
geometry, quantum chaos, and
the theory of automorphic forms.

Central to the study of moduli
spaces of Riemann surfaces,
mapping class groups, and
combinatorial aspects of surface
geometry.

Counting
Domain

Applies to all primitive closed
geodesics (up to conjugacy) on
the hyperbolic surface.

Applies only to the subset of
simple closed geodesics.

Table 1: Comparison of the Prime Geodesic Theorem and Mirzakhani’s Result
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Definitions

Closed Geodesic: A geodesic on a Riemannian manifold (or hyperbolic surface) X is a
curve that locally minimizes distance. A geodesic is said to be closed if it is peri-
odic—that is, if it is given by a continuous map

γ : R → X

satisfying γ(t+ T ) = γ(t) for all t and some minimal period T > 0. The number T is
then called the length of the closed geodesic.

Simple Geodesic: A closed geodesic is called simple if it does not intersect itself. Formally,
if γ(t1) = γ(t2) for some t1, t2 ∈ R, then t1 ≡ t2 (mod T ).

Primitive Geodesic: A closed geodesic is primitive if it is not obtained by traversing a
shorter closed geodesic repeatedly. In other words, if γ is a closed geodesic and γn

denotes the curve that follows γ n times consecutively (with length nT ), then γn is not
primitive unless n = 1.

Group-Theoretic Interpretation

The theory of closed geodesics on a hyperbolic surface X is intimately connected with the
algebraic properties of the fundamental group π1(X). When X is represented as

X = Γ\H2,

the conjugacy classes in the discrete group Γ correspond bijectively to the free homotopy
classes of closed curves on X.

Displacement Length and Closed Geodesics. For a hyperbolic element γ ∈ Γ, the
displacement length is defined by

ℓ(γ) := inf
z∈H2

d(z, γz).

It is a standard fact that:

1. The function z 7→ d(z, γz) attains its minimum on the unique geodesic (the axis of γ)
that is invariant under γ.

2. The displacement length ℓ(γ) is positive and is exactly the distance by which γ trans-
lates points along its axis.

Thus, when we project the axis of γ to the surface X, we obtain a closed geodesic whose
length is precisely ℓ(γ).

Primitive Elements. An element γ ∈ Γ is called primitive if it is not a proper power
of another element; that is, if

γ = γn0 for some γ0 ∈ Γ and n ≥ 1,
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then necessarily n = 1. Equivalently, a closed geodesic on X is primitive if it is not the
multiple traversal of a shorter closed geodesic. In the group picture, only the conjugacy
classes of primitive elements correspond to primitive closed geodesics.

Discussion of Other Types of Elements:
While in many treatments we assume Γ is torsion-free so that every nontrivial element

is hyperbolic, in a broader context one may encounter the following types of elements in
PSL(2,R):

1. Hyperbolic Elements: These elements satisfy |tr(γ)| > 2 and have two distinct fixed
points on the boundary ∂H2. They act by translating along a unique geodesic (the
axis), and their displacement length is positive and equals the length of the correspond-
ing closed geodesic on X. Hyperbolic elements are the ones that give rise to closed
geodesics, and the notion of primitivity applies naturally to them.

2. Parabolic Elements: Parabolic elements have |tr(γ)| = 2 and possess a single fixed
point on ∂H2. They act by “shearing” along horocycles centered at this fixed point
and do not have an axis in the traditional sense. In a hyperbolic surface, parabolic
elements are associated with cusps. Since they do not translate points along a geodesic
by a fixed positive distance (i.e., they lack a finite displacement length), they do not
yield closed geodesics in the usual sense.

3. Elliptic Elements: Elliptic elements satisfy |tr(γ)| < 2 and have a fixed point in the
interior of H2. They act as rotations about that fixed point. Elliptic elements occur
when the quotient X = Γ\H2 is an orbifold rather than a smooth manifold. Since
elliptic elements rotate rather than translate, the notion of displacement length does
not apply, and they do not produce closed geodesics in the standard sense.

4. Loxodromic Elements: In the context of Kleinian groups acting on hyperbolic 3-
spaceH3 or higher-dimensional hyperbolic spaces, one distinguishes between hyperbolic
and loxodromic elements. In two dimensions (H2), every hyperbolic element is also lox-
odromic. The term “loxodromic” is sometimes used to emphasize that the isometry
combines translation with a rotational twist (a spiral motion). However, in H2 any hy-
perbolic element can be conjugated into a diagonal form (up to sign), so the distinction
is not essential.

Summary: In our standard setting of a hyperbolic surface X = Γ\H2 with Γ torsion-
free:

• Every nontrivial element of Γ is hyperbolic.

• A closed geodesic on X is the projection of the axis of a hyperbolic element.

• The displacement length of a hyperbolic element equals the length of the corresponding
closed geodesic.

• A closed geodesic is primitive if it is not a proper multiple of a shorter geodesic;
equivalently, a hyperbolic element is primitive if it is not a proper power in Γ.
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Parabolic elements (which arise in the presence of cusps) and elliptic elements (which occur
when X is an orbifold) do not yield closed geodesics in the standard sense because they do
not have a finite displacement length along a geodesic.

Displacement Length of Hyperbolic Elements

Let γ ∈ SL(2,R) be a hyperbolic element. This means that

| tr(γ)| > 2.

Then γ has two distinct real eigenvalues, say λ and λ−1 (with |λ| > 1), and a unique invariant
geodesic (its axis) in the hyperbolic plane H2. The translation length ℓ(γ) is defined as the
distance by which γ translates any point on its axis:

ℓ(γ) = inf
z∈H2

d(z, γ(z)).

It turns out that

ℓ(γ) = 2 cosh−1
( | tr(γ)|

2

)
.

Below we provide three proofs of this fact.

Proof 1: Using Eigenvalues

Since γ has eigenvalues λ and λ−1 with |λ| > 1, we have

tr(γ) = λ+ λ−1.

It is well known that a hyperbolic isometry translates points along its axis by a distance

ℓ(γ) = 2 log |λ|.

Now, note that
eℓ(γ)/2 = |λ| and e−ℓ(γ)/2 = |λ|−1.

Thus,

eℓ(γ)/2 + e−ℓ(γ)/2 = |λ|+ |λ|−1 =
| tr(γ)|

1
= λ+ λ−1.

But by definition,

eℓ(γ)/2 + e−ℓ(γ)/2 = 2 cosh
(ℓ(γ)

2

)
.

Hence,

2 cosh
(ℓ(γ)

2

)
= λ+ λ−1 = tr(γ),

so that

cosh
(ℓ(γ)

2

)
=

| tr(γ)|
2

.

Taking the inverse hyperbolic cosine yields

ℓ(γ)

2
= cosh−1

( | tr(γ)|
2

)
=⇒ ℓ(γ) = 2 cosh−1

( | tr(γ)|
2

)
.
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Proof 2: Conjugation to a Diagonal Form

Since γ is hyperbolic, there exists a matrix A ∈ SL(2,R) such that

γ = A

(
λ 0
0 λ−1

)
A−1,

with |λ| > 1. Conjugating further if necessary, we may assume that γ fixes 0 and ∞; in this
case, γ acts by

γ(z) = λ2z,

for z ∈ H2 (where we have written λ2 instead of λ by a suitable normalization). The
hyperbolic distance between a point z > 0 (on the positive real axis, which is a geodesic in
H2) and its image γ(z) = λ2z is

d(z, γ(z)) =

∣∣∣∣log(γ(z)z
)∣∣∣∣ = log(λ2) = 2 log |λ|.

Thus, the translation length is
ℓ(γ) = 2 log |λ|.

Now, as in Proof 1, note that

tr(γ) = λ+ λ−1 = 2 cosh
(ℓ(γ)

2

)
,

so that

ℓ(γ) = 2 cosh−1
( | tr(γ)|

2

)
.

Proof 3: Using the Cross-Ratio (Ahlfors’ Approach)

The cross ratio is a projective invariant that can be used to express the translation length
of a hyperbolic element. Let γ ∈ SL(2,R) be hyperbolic with fixed points ξ, η on ∂H2 (with,
say, ξ < η in a suitable coordinate system). For any point z on the geodesic connecting ξ
and η, define the cross ratio

[z, γ(z); ξ, η] =
(z − ξ)(γ(z)− η)

(z − η)(γ(z)− ξ)
.

It can be shown (see, e.g., Ahlfors’ Complex Analysis) that this cross ratio is independent
of the choice of z on the geodesic and that

[z, γ(z); ξ, η] = eℓ(γ),

where ℓ(γ) is the translation length of γ.
Taking the logarithm of both sides yields

ℓ(γ) = log[z, γ(z); ξ, η].
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Now, if we conjugate γ so that its fixed points become 0 and∞, then the cross ratio simplifies.
In this conjugated form, the transformation acts by

γ(z) = λ2z,

and the fixed points are 0 and ∞. Choosing any z > 0 (which lies on the geodesic joining 0
and ∞), we have

[z, γ(z); 0,∞] =
(z − 0)(γ(z)−∞)

(z −∞)(γ(z)− 0)
.

More rigorously, by a standard computation the cross ratio reduces to

[z, γ(z); 0,∞] =
γ(z)

z
= λ2.

Taking the logarithm, we obtain

ℓ(γ) = log(λ2) = 2 log |λ|.

As in the earlier proofs, since

tr(γ) = λ+ λ−1 = 2 cosh
(ℓ(γ)

2

)
,

we conclude that

ℓ(γ) = 2 cosh−1
( | tr(γ)|

2

)
.

Summary

We have provided three proofs:

1. Using eigenvalues directly.

2. Conjugating γ to a diagonal form.

3. Using the cross ratio as in Ahlfors’ approach.

Each proof shows that for a hyperbolic element γ ∈ SL(2,R), the translation length is given
by

ℓ(γ) = 2 cosh−1
( | tr(γ)|

2

)
.

Note that parabolic and elliptic elements do not have a finite translation length along a
unique geodesic in H2 (parabolic elements fix a single point on the boundary and elliptic ele-
ments fix a point in H2), so this formula applies only to hyperbolic (or, in higher dimensions,
loxodromic) elements.

Example: Consider the matrix

γ =

(
2 1
1 1

)
∈ SL(2,R).

10



A quick calculation shows that
tr(γ) = 3 > 2,

so γ is hyperbolic. Its translation length is computed by

ℓ(γ) = 2 cosh−1

(
|tr(γ)|

2

)
= 2 cosh−1

(
3

2

)
.

Thus, γ moves points along its unique invariant geodesic in H2 by a distance 2 cosh−1(3/2).
The closed geodesic on X = Γ\H2 corresponding to γ has this length. Moreover, since γ
cannot be written as a nontrivial power of another element in Γ, it is classified as primitive.

Displacement Length of Elliptic Elements

We want to show that if
ℓ(T ) = inf

z∈H2
dH2(z, T (z))

is the minimal displacement (translation length) of a hyperbolic isometry T , then

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

In other words, the expression

2 arccosh
(Tr(T )

2

)
comes from computing the minimal distance that T moves a point in H2.

In what follows we give a detailed proof of this fact.

—

Step 1. Reduction to a Canonical Form
A hyperbolic isometry T has two fixed points on the boundary of H2 and leaves invariant

a unique geodesic (called the axis of T ). It is a standard fact that any hyperbolic isometry
in PSL(2,R) is conjugate to a dilation. That is, there exists a Möbius transformation M
such that

M ◦ T ◦M−1(z) = λ2 z,

with λ > 1. (Sometimes one writes the dilation as z 7→ eℓ/2z; we will see below that the
translation length is then ℓ = 2 log λ.)

Since the hyperbolic metric is invariant under Möbius transformations, the translation
length of T is the same as that of its conjugate. Hence, without loss of generality we may
assume that

T (z) = λ2z,

with λ > 1.

Step 2. Compute the Minimal Displacement for a Dilation
The Hyperbolic Distance
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Recall that in the upper half-plane model the hyperbolic distance between z and w is
given by

dH2(z, w) = arccosh

(
1 +

|z − w|2

2 Im(z) Im(w)

)
.

A key observation is that the dilation

T (z) = λ2z

has its invariant geodesic along the positive imaginary axis. (More generally, one can show
that the axis of T is the unique geodesic joining 0 and ∞; in our case, that is the vertical
line {x = 0, y > 0}.)

Thus, choose a point on the axis:

z = i y, y > 0.

Then
T (i y) = λ2(i y) = i λ2y.

Computing dH2(i y, i λ2y)
For two points on the imaginary axis z = i y and w = i (λ2y), we have

• |z − w| = |i y − i λ2y| = y|λ2 − 1|.

• Im(z) = y and Im(w) = λ2y.

Thus,

dH2(i y, i λ2y) = arccosh

(
1 +

(y|λ2 − 1|)2

2 y (λ2y)

)
= arccosh

(
1 +

y2(λ2 − 1)2

2λ2y2

)
.

Simplify the fraction:
y2(λ2 − 1)2

2λ2y2
=

(λ2 − 1)2

2λ2
.

Thus,

dH2(i y, i λ2y) = arccosh

(
1 +

(λ2 − 1)2

2λ2

)
.

It turns out that this expression is independent of y (as it must be, since the translation
along the axis is constant).

A Better Way: Using the Standard Formula
There is a well-known fact in hyperbolic geometry that when T is given by the dilation

T (z) = λ2z,

the translation length is
ℓ(T ) = 2 log λ.
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We now verify that this agrees with the distance computed above.
Since

cosh(2 log λ) =
e2 log λ + e−2 log λ

2
=
λ2 + λ−2

2
,

we can write

2 log λ = 2arccosh

(
λ2 + λ−2

2

)
.

Step 3. Relating the Trace to λ and ℓ(T )
Any hyperbolic isometry T (when represented in PSL(2,R)) has a matrix representative

conjugate to (
λ 0

0 λ−1

)
.

Its trace is
Tr(T ) = λ+ λ−1.

Observe that

cosh
(ℓ(T )

2

)
= cosh(log λ) =

λ+ λ−1

2
=

Tr(T )

2
.

Taking the inverse hyperbolic cosine of both sides, we have

ℓ(T )

2
= arccosh

(Tr(T )
2

)
.

Multiplying by 2 gives

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

Step 4. Conclusion
Thus, by choosing a point on the axis of T (where the displacement is minimized) and

computing the hyperbolic distance, we find that the minimal displacement of a hyperbolic
isometry T is exactly

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

This shows that the formula for ℓ(T ) indeed follows by computing the minimum displacement
(i.e., the translation length) using the hyperbolic distance formula.

Summary

1. Conjugation to a Dilation: Every hyperbolic isometry is conjugate to a dilation
z 7→ λ2z.

2. Minimal Displacement: On the axis (the vertical line in the model), the displace-
ment is constant and equals 2 log λ.

3. Trace Relation: The matrix representing the dilation has trace λ + λ−1, and one
shows that

2 log λ = 2arccosh
(λ+ λ−1

2

)
= 2arccosh

(Tr(T )
2

)
.

13



4. Conclusion: Hence, the minimal displacement (translation length) is given by

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

This completes the proof.
We want to show that if

ℓ(T ) = inf
z∈H2

dH2(z, T (z))

is the minimal displacement (translation length) of a hyperbolic isometry T , then

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

In other words, the expression

2 arccosh
(Tr(T )

2

)
comes from computing the minimal distance that T moves a point in H2.

In what follows we give a detailed proof of this fact.

—

Step 1. Reduction to a Canonical Form
A hyperbolic isometry T has two fixed points on the boundary of H2 and leaves invariant

a unique geodesic (called the axis of T ). It is a standard fact that any hyperbolic isometry
in PSL(2,R) is conjugate to a dilation. That is, there exists a Möbius transformation M
such that

M ◦ T ◦M−1(z) = λ2 z,

with λ > 1. (Sometimes one writes the dilation as z 7→ eℓ/2z; we will see below that the
translation length is then ℓ = 2 log λ.)

Since the hyperbolic metric is invariant under Möbius transformations, the translation
length of T is the same as that of its conjugate. Hence, without loss of generality we may
assume that

T (z) = λ2z,

with λ > 1.

Step 2. Compute the Minimal Displacement for a Dilation
The Hyperbolic Distance
Recall that in the upper half-plane model the hyperbolic distance between z and w is

given by

dH2(z, w) = arccosh

(
1 +

|z − w|2

2 Im(z) Im(w)

)
.

A key observation is that the dilation

T (z) = λ2z
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has its invariant geodesic along the positive imaginary axis. (More generally, one can show
that the axis of T is the unique geodesic joining 0 and ∞; in our case, that is the vertical
line {x = 0, y > 0}.)

Thus, choose a point on the axis:

z = i y, y > 0.

Then
T (i y) = λ2(i y) = i λ2y.

Computing dH2(i y, i λ2y)
For two points on the imaginary axis z = i y and w = i (λ2y), we have

• |z − w| = |i y − i λ2y| = y|λ2 − 1|.

• Im(z) = y and Im(w) = λ2y.

Thus,

dH2(i y, i λ2y) = arccosh

(
1 +

(y|λ2 − 1|)2

2 y (λ2y)

)
= arccosh

(
1 +

y2(λ2 − 1)2

2λ2y2

)
.

Simplify the fraction:
y2(λ2 − 1)2

2λ2y2
=

(λ2 − 1)2

2λ2
.

Thus,

dH2(i y, i λ2y) = arccosh

(
1 +

(λ2 − 1)2

2λ2

)
.

It turns out that this expression is independent of y (as it must be, since the translation
along the axis is constant).

A Better Way: Using the Standard Formula
There is a well-known fact in hyperbolic geometry that when T is given by the dilation

T (z) = λ2z,

the translation length is
ℓ(T ) = 2 log λ.

We now verify that this agrees with the distance computed above.
Since

cosh(2 log λ) =
e2 log λ + e−2 log λ

2
=
λ2 + λ−2

2
,

we can write

2 log λ = 2arccosh

(
λ2 + λ−2

2

)
.

Step 3. Relating the Trace to λ and ℓ(T )
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Any hyperbolic isometry T (when represented in PSL(2,R)) has a matrix representative
conjugate to (

λ 0

0 λ−1

)
.

Its trace is
Tr(T ) = λ+ λ−1.

Observe that

cosh
(ℓ(T )

2

)
= cosh(log λ) =

λ+ λ−1

2
=

Tr(T )

2
.

Taking the inverse hyperbolic cosine of both sides, we have

ℓ(T )

2
= arccosh

(Tr(T )
2

)
.

Multiplying by 2 gives

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

Step 4. Conclusion
Thus, by choosing a point on the axis of T (where the displacement is minimized) and

computing the hyperbolic distance, we find that the minimal displacement of a hyperbolic
isometry T is exactly

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

This shows that the formula for ℓ(T ) indeed follows by computing the minimum displacement
(i.e., the translation length) using the hyperbolic distance formula.

Summary

1. Conjugation to a Dilation: Every hyperbolic isometry is conjugate to a dilation
z 7→ λ2z.

2. Minimal Displacement: On the axis (the vertical line in the model), the displace-
ment is constant and equals 2 log λ.

3. Trace Relation: The matrix representing the dilation has trace λ + λ−1, and one
shows that

2 log λ = 2arccosh
(λ+ λ−1

2

)
= 2arccosh

(Tr(T )
2

)
.

4. Conclusion: Hence, the minimal displacement (translation length) is given by

ℓ(T ) = 2 arccosh
(Tr(T )

2

)
.

This completes the proof.
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Displacement Length of Elliptic Elements

In hyperbolic geometry, the displacement (or translational) length of an isometry T is defined
as

ℓ(T ) = inf
z∈H

d(z, T (z)).

If T is an elliptic isometry, it has a fixed point z0 ∈ H such that T (z0) = z0. Consequently,

d(z0, T (z0)) = d(z0, z0) = 0,

which implies that
ℓ(T ) = 0.

It’s also worth noting that while elliptic (and parabolic) isometries have ℓ(T ) = 0, hy-
perbolic isometries have a positive translation length, with the infimum being achieved on a
unique geodesic called the axis of the isometry.

Furthermore, we can prove that the expression

2 arccosh

(
|Tr(T )|

2

)
is purely imaginary when T is elliptic and is related to the rotation angle of T .
Step 1: Understanding the Trace Condition for Elliptic Isometries An isometry

T of the hyperbolic plane H in PSL(2,R) is elliptic if and only if

|Tr(T )| < 2.

Since T is an element of PSL(2,R), it can be written in matrix form as

T =

[
a b
c d

]
, with ad− bc = 1.

Yes, that is correct. When working in PSL(2,R)** rather than **SL(2,R)**, the absolute
value around Tr(T ) is not necessary.

Why?
1. In SL(2,R), matrices have determinant 1, but we can have both T and −T represent-

ing the same Möbius transformation. That is, both:

T =

[
a b
c d

]
and

−T =

[
−a −b
−c −d

]
induce the same transformation on H2. However, their traces satisfy:

Tr(−T ) = −Tr(T ).
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Since both matrices define the same transformation, we need to ensure that the trace
does not change sign when switching representations. Therefore, in SL(2,R), we use:

|Tr(T )|

to account for this ambiguity.
2. In PSL(2,R) = SL(2,R)/{±I}, we identify T and −T as the same element. This

means the trace ambiguity is naturally resolved, and we can simply write:

ℓ(T ) = 2 arccosh

(
Tr(T )

2

)
.

without needing the absolute value.
- In SL(2,R), we use |Tr(T )| because T and −T have opposite traces.
- In PSL(2,R), we do not need absolute values, since the trace is well-defined

up to sign.
- Thus, when working purely in PSL(2,R), you can safely use:

ℓ(T ) = 2 arccosh

(
Tr(T )

2

)
.

The trace is given by:

Tr(T ) = a+ d.

If T is elliptic, its action on H is a rotation about a fixed point in H. The characteristic
equation for T satisfies:

λ2 − Tr(T )λ+ 1 = 0.

Solving for λ, the eigenvalues of T are:

λ =
Tr(T )±

√
Tr(T )2 − 4

2
.

Since |Tr(T )| < 2, the quantity under the square root is negative:

Tr(T )2 − 4 < 0.

Thus, the eigenvalues of T are complex and can be written as:

λ = e±iθ,

for some real θ, where θ is the rotation angle of T .
Step 2: Evaluating arccosh By definition, the inverse hyperbolic cosine is:

arccosh(x) = ln
(
x+

√
x2 − 1

)
, for x ≥ 1.

Applying this to our case, we set:
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x =
|Tr(T )|

2
.

Since |Tr(T )| < 2, we have:

−1 <
Tr(T )

2
< 1.

Now, recall the identity:

arccosh(x) = i arccos(x), for − 1 ≤ x ≤ 1.

Thus, since −1 < Tr(T )
2

< 1, we obtain:

arccosh

(
|Tr(T )|

2

)
= i arccos

(
|Tr(T )|

2

)
.

Multiplying by 2,

2 arccosh

(
|Tr(T )|

2

)
= 2i arccos

(
|Tr(T )|

2

)
.

Step 3: Connection to the Rotation Angle From the eigenvalues of T , we identified
the rotation angle θ as:

θ = arccos

(
Tr(T )

2

)
.

Comparing with our previous result,

2 arccosh

(
|Tr(T )|

2

)
= 2iθ.

Thus, the expression is purely imaginary, and the imaginary part corresponds to twice
the rotation angle of T .

Conclusion For an elliptic isometry T :

2 arccosh

(
|Tr(T )|

2

)
= 2iθ,

where θ is the rotation angle of T . This confirms that the formula, when applied to
elliptic isometries, yields an imaginary value rather than a real translation length, and its
imaginary component is directly related to the angle of rotation.

1.2 Elliptic Elements in Fuchsian Groups are Not Primitive

Below is a concise, self-contained proof that elliptic elements in a Fuchsian group (or more
generally, in PSL(2,R)) cannot be primitive, under the usual definition of “primitive ele-
ment.”
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1.2.1 Definitions and Setup

• Elliptic Element: In PSL(2,R), an element γ is called elliptic if it has finite order
n > 1. Equivalently, γ fixes a point in H2 and acts as a rotation of finite angle around
that point. Concretely, γn = Id for some integer n > 1.

• Primitive Element: An element γ ∈ Γ (where Γ ⊆ PSL(2,R)) is said to be primitive
if it is not a proper power of any other element in Γ. Formally, γ is primitive if there
do not exist γ0 ∈ Γ and an integer k > 1 such that

γ = γk0 .

Geometric Interpretation:

• Hyperbolic elements in PSL(2,R) have infinite order and correspond to closed
geodesics in the quotient manifold Γ\H2. A hyperbolic element γ is primitive if the
corresponding closed geodesic is not just a multiple cover of a shorter geodesic.

• Elliptic elements, on the other hand, have finite order and do not produce a “usual”
closed geodesic in Γ\H2. Instead, they correspond to orbifold points (cone points) or
rotational symmetries.

1.2.2 Statement

Claim: Elliptic elements are not primitive.

In other words, if γ is elliptic of finite order n > 1, then γ can be expressed as a nontrivial
power of another element in the group. Hence, by definition, γ is not primitive.

1.2.3 Proof

1. Finite Order: Since γ is elliptic, there is an integer n > 1 such that

γn = Id.

That is, γ has order n.

2. Constructing a Root: We claim that γ is itself a power of some element δ ∈ Γ.
Indeed, pick m such that gcd(m,n) = 1. By Bézout’s identity, there exist integers x, y
such that

mx+ ny = 1.

Define δ := γm. Then

δx = (γm)x = γmx, γny = Idy = Id.

Multiplying, we get
δxγny = γmx+ny = γ.

But γny = Id, so
δx = γ.

Since x ̸= ±1 (indeed, |x| ≥ 2 or |y| ≥ 1 in typical cases where n > 1), we see that γ
is expressed as a nontrivial power δx. Hence, γ is not primitive.
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3. Conclusion: Because every elliptic element γ can be written as a proper power δk for
some k > 1, it follows that no elliptic element is primitive. Thus, elliptic elements fail
the “no proper power” condition that defines primitiveness.

Therefore, elliptic elements are not primitive.

1.2.4 Geometric Interpretation

From a geometric perspective, an elliptic element γ means it acts on the hyperbolic plane
H2 by rotation around a fixed point. This element does not give rise to a closed geodesic
of positive length in the quotient manifold, unlike a hyperbolic element that has infinite
order and translates along an axis. The concept of “primitive” is primarily meaningful for
hyperbolic elements with infinite order. Elliptic elements—having finite order—never qualify
as primitive because:

• They do not produce “genuine” closed geodesics in the usual sense.

• Algebraically, they are finite-order elements that can be expressed as nontrivial powers
of other elements (as shown in the proof).

Hence, “primitive” in geometric group theory typically refers to infinite-order elements
that cannot be expressed as a power of another infinite-order element, something that fails
automatically for finite-order (elliptic) elements.

Elliptic elements are finite-order, thus always expressible as proper powers, so they’re not primitive.

Displacement Length of Parabolic Elements

If T is a parabolic isometry of the hyperbolic plane H, then its displacement length ℓ(T ) is
also 0.

Explanation: By definition, the displacement length of an isometry T is given by:

ℓ(T ) = inf
z∈H

d(z, T (z)).

A parabolic isometry has exactly one fixed point on the boundary ∂H at infinity and does
not have any fixed points in H. It acts as a ”shear” along horocycles centered at the fixed
point.

For any point z ∈ H, the hyperbolic distance d(z, T (z)) is strictly positive, but there exist
sequences zn in H that approach the parabolic fixed point at infinity for which d(zn, T (zn)) →
0. This ensures that the infimum in the definition of ℓ(T ) is attained at 0.

Alternatively, we can still apply the formula

2 arccosh

(
|Tr(T )|

2

)
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even when T is parabolic. However, we must carefully consider its evaluation.
Case: T is Parabolic (|Tr(T )| = 2) By definition, a parabolic isometry satisfies:

|Tr(T )| = 2.

Substituting this into the formula,

2 arccosh

(
2

2

)
= 2arccosh(1).

Since we know that

arccosh(1) = 0,

we obtain:

2 arccosh(1) = 2× 0 = 0.

Interpretation - The formula correctly gives 0, which aligns with the fact that parabolic
isometries have zero translation length ℓ(T ) = 0.

- Thus, even though parabolic isometries behave differently from hyperbolic ones, the
formula still holds in the limiting sense.

- For hyperbolic isometries, |Tr(T )| > 2, and the formula gives a positive translation
length.

- For elliptic isometries, |Tr(T )| < 2, the argument of arccosh is less than 1, which is
undefined in the real domain, indicating a purely imaginary result instead of a real translation
length.

Conclusion: Thus, for a parabolic isometry T , we conclude that:

ℓ(T ) = 0.

This result aligns with the classification of isometries in hyperbolic geometry:

• Elliptic: ℓ(T ) = 0 (has a fixed point in H).

• Parabolic: ℓ(T ) = 0 (has exactly one fixed point at infinity).

• Hyperbolic: ℓ(T ) > 0 (has an invariant geodesic and translates points along it).

Conclusion: To summarize, we define:

• A closed geodesic on X is a geodesic that is periodic.

• It is simple if it has no self-intersections.

• It is primitive if it is not obtained by iterating a shorter closed geodesic. Equivalently,
in the group Γ, an element is primitive if it is not a proper power.

In the standard case where Γ is torsion-free, every nontrivial element is hyperbolic, so every
closed geodesic arises from a hyperbolic element whose translation length equals the length
of the geodesic. Parabolic and elliptic elements, by contrast, do not yield closed geodesics
in the usual sense because they lack a finite translation length along a unique invariant
geodesic.

22



1.3 Parabolic Elements in a Fuchsian Group Do Not Produce
Closed Geodesics and Are Not Primitive

Below is a concise, self-contained explanation of why parabolic elements in a Fuchsian group
(or, more generally, in PSL(2,R)) do not produce simple closed geodesics in the quotient
manifold Γ\H2. In short, parabolic transformations act by “sliding” points along horocycles
around a single boundary fixed point, and thus they do not have an axis in H2. Consequently,
they cannot produce closed geodesics of positive length [7, Section 7.2, 12.1].

1.3.1 Definitions and Setup

1. Fuchsian Group: A discrete subgroup Γ ⊂ PSL(2,R) acting on the hyperbolic plane
H2. The quotient

X := Γ\H2

(or orbifold) is typically a hyperbolic surface (or orbifold) of finite volume if Γ is cofinite
[7, Chapter 7].

2. Parabolic Element: In PSL(2,R), an element γ is called parabolic if it has infinite
order but exactly one fixed point on the boundary ∂H2. Concretely, γ can be conjugated
into a matrix of the form (

1 1
0 1

)
,

which fixes the boundary point ∞ [7, Section 7.2].

3. Closed Geodesic in Γ\H2: A closed geodesic is a loop that is geodesic in each
homotopy class. It arises precisely from a hyperbolic element of Γ, which has two
boundary fixed points and an axis in H2. This axis projects to a loop of positive
length in X [7, Section 12.1].

Key Point : Parabolic elements have no axis in H2 and therefore cannot correspond to
closed geodesics in the quotient manifold.

1.3.2 Geometric Reason: Single Boundary Fixed Point, No Axis

1. Single Fixed Point on Boundary: Since γ is parabolic, it fixes exactly one point
ξ ∈ ∂H2. For instance, in the upper half-plane model, one can assume γ(∞) = ∞.

2. Horocycles Instead of Axes: The isometry γ does not have a geodesic in the interior
of H2 that is stabilized by γ. Instead, it slides points along a family of horocycles
centered at the boundary point ξ. In the upper half-plane model, with ξ = ∞, these
horocycles look like horizontal lines y = constant.

3. No Closed Loop: Because γ merely translates along these horocycles, it does not
create a loop in Γ\H2. The corresponding region in the quotient is a cusp, typically
represented by an end of the surface that is topologically an infinite funnel or a cylinder
of zero length in the limit. Thus, γ yields a cusp in the quotient, not a closed geodesic
[7, Section 12.1].

23



1.3.3 Parabolic Elements Are Not Primitive

A parabolic element γ is not primitive because it can be expressed as a nontrivial power of
another parabolic element [7, Section 7.2]. Explicitly, if γ is conjugate to(

1 1
0 1

)
,

then it can be written as

γ = δn, where δ =

(
1 1/n
0 1

)
,

for some integer n > 1. Since γ is a proper power of δ, it fails the definition of primitiveness.

Parabolic elements are not primitive because they are always expressible as proper powers.

1.4 Counting Closed Geodesics on Hyperbolic Surfaces

In number theory, the Prime Number Theorem tells us that the number of prime numbers
up to N , denoted by π(N), satisfies

π(N) ∼ N

logN
as N → ∞.

In analogy, in the geometric setting of hyperbolic surfaces we consider a counting problem
for closed geodesics.

Primitive Closed Geodesics and Translation Length

Let X be a closed, connected, oriented hyperbolic surface. (Recall that a hyperbolic surface
is a two-dimensional Riemannian manifold whose metric has constant curvature −1.) Every
closed geodesic on X can be viewed as the projection to X of the axis of a hyperbolic element
in the fundamental group Γ of X.

More precisely, one may represent X as

X = Γ\H2,

where Γ is a discrete, torsion-free subgroup of PSL(2,R). A nontrivial element γ ∈ Γ is
hyperbolic if

| tr(γ)| > 2.

For such a hyperbolic element, one can define its translation length by

ℓ(γ) = inf
z∈H2

d(z, γz).

It can be shown (by various methods, e.g., via eigenvalues or the cross-ratio) that

ℓ(γ) = 2 cosh−1
( | tr(γ)|

2

)
.
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This translation length is exactly the length of the closed geodesic on X corresponding to γ.
A closed geodesic is called primitive if it is not obtained by repeatedly traversing a shorter

geodesic. Equivalently, a hyperbolic element γ ∈ Γ is called primitive if it is not a proper
power (i.e. there is no γ0 ∈ Γ and an integer n ≥ 2 with γ = γn0 ). Thus, the length L in
our counting problem is exactly the upper bound on the translation lengths of the primitive
hyperbolic elements of Γ.

The Prime Geodesic Theorem

Given a closed, oriented hyperbolic surface X and a positive real number L, let

c(X,L)

denote the number of (non-oriented) primitive closed geodesics on X whose lengths are at
most L. The Prime Geodesic Theorem is the geometric analogue of the Prime Number
Theorem. It states that, for any such surface X,

c(X,L) ∼ eL

2L
as L→ ∞.

That is, the number of primitive closed geodesics grows exponentially with rate eL (and a log-
arithmic correction factor 1/(2L)), and remarkably, the asymptotic behavior is universal—it
does not depend on the finer geometric or topological details of X.

How L Relates to Translation Length: Recall that for a hyperbolic element γ ∈ Γ,
the translation length ℓ(γ) is the distance by which γ moves any point on its axis in H2. The
closed geodesic on X corresponding to γ has length exactly ℓ(γ). In our counting function
c(X,L), we count only those primitive elements for which ℓ(γ) ≤ L. Thus, the parameter L
directly represents an upper bound on the length (or translation length) of the geodesics we
are counting.

A Numerical Example

Consider, for example, the modular surface

X = PSL(2,Z)\H2.

(Strictly speaking, X is an orbifold, but similar asymptotic formulas hold.) For large L, the
Prime Geodesic Theorem tells us that the number of primitive closed geodesics with length
at most L is approximately

c(X,L) ≈ eL

2L
.

For instance, if L = 10, then one would expect

c(X, 10) ≈ e10

20
≈ 22026.5

20
≈ 1101.

While the precise count for the modular surface involves many subtleties, this numerical
estimate gives a rough idea of the exponential growth.
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An Outline of a Proof of the Prime Geodesic Theorem

A full proof of the Prime Geodesic Theorem is quite advanced and relies on a blend of
spectral theory, analytic number theory, and the theory of automorphic forms. Below is an
outline of the main ideas involved:

1. Selberg Trace Formula: One of the key tools is the Selberg trace formula, which
is an identity that relates spectral data of the Laplacian on X (eigenvalues and eigen-
functions) to geometric data (lengths of closed geodesics). The trace formula can be
viewed as an analogue of the explicit formula in prime number theory.

2. Spectral Analysis: By analyzing the contributions of the closed geodesics in the trace
formula, one can isolate an “error term” and identify the main term that governs the
asymptotic behavior of c(X,L). The hyperbolic terms in the trace formula correspond
precisely to the primitive closed geodesics.

3. Asymptotic Analysis: One shows that the main term in the trace formula leads to
an expression of the form

c(X,L) ∼ eL

2L
,

by employing techniques analogous to those used in the proof of the Prime Number
Theorem.

4. Uniformity and Independence: A key aspect is that the asymptotic formula is
independent of the particular geometry of X (beyond its hyperbolic structure). This
uniformity is a consequence of the invariance properties of the trace formula and the
deep ergodic properties of the geodesic flow.

While a complete proof requires many pages of technical details and advanced tools,
this outline captures the main strategy: the Selberg trace formula connects spectral theory
with the geometry of X, and a careful asymptotic analysis of its hyperbolic terms yields the
exponential growth law of the primitive closed geodesics.

Summary

To summarize:

• For a hyperbolic surface X, the closed geodesics correspond to hyperbolic elements in
the fundamental group Γ, and the translation length of such an element equals the
length of the associated geodesic.

• A closed geodesic is primitive if it is not a multiple traversal of a shorter geodesic.

• The Prime Geodesic Theorem states that the number c(X,L) of primitive closed
geodesics of length at most L satisfies

c(X,L) ∼ eL

2L
as L→ ∞.
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• Numerically, for instance, if L = 10 on the modular surface, one obtains c(X, 10) ≈
1101.

• The proof of the theorem is based on the Selberg trace formula, which relates spectral
data of the Laplacian on X to the geometric data of closed geodesics.

This result is remarkable because it shows that, despite the potentially complicated ge-
ometry and topology of X, the asymptotic behavior of primitive closed geodesics is universal
and depends only on the hyperbolic structure.

Simple Closed Geodesics and Mirzakhani’s Breakthrough

While the prime geodesic theorem concerns all primitive closed geodesics, one may further
ask: What if we restrict our attention to those closed geodesics that are simple? A closed
geodesic is called simple if it does not intersect itself. Let s(X,L) denote the number of
simple closed geodesics on X of length at most L. At first glance, one might expect that the
asymptotic behavior of s(X,L) should be similar to that of c(X,L); however, the situation
turns out to be considerably more subtle.

For many years, the asymptotic behavior of s(X,L) remained an open problem because
traditional analytic techniques (such as those used by Huber and Selberg) did not distinguish
between simple and non-simple geodesics. The breakthrough came with the work of Maryam
Mirzakhani. In her 2004 Ph.D. thesis [6], she proved the following remarkable theorem:

Theorem 1.1 (Mirzakhani, Theorem 1.1 [6]). Let X be a closed, connected, oriented hyper-
bolic surface of genus g ≥ 2. Then, there exists a positive constant s(X) (depending on X)
such that

s(X,L) ∼ s(X) · L6g−6 as L→ ∞.

This result is striking for several reasons:

• The polynomial growth rate L6g−6 depends solely on the topology of X (through the
genus g) and not on its specific hyperbolic geometry.

• Mirzakhani’s proof uses techniques from ergodic theory, together with her celebrated
formulas for Weil–Petersson volumes and integration over moduli space.

Mirzakhani’s work has had far-reaching implications across various areas of mathematics.
As an example of a concrete consequence of her work, consider the following result:

Theorem 1.2 (Mirzakhani, Corollary 1.4). On any closed, oriented hyperbolic surface of
genus 2, a random long simple closed geodesic is 48 times more likely to be non-separating
than separating.

Goals and Organization of the Survey

The primary aim of this survey is to provide a detailed and accessible account of Mirzakhani’s
proof of Theorem 1.1, making the advanced ideas approachable even for undergraduates. In
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doing so, we draw inspiration from classic results on counting lattice points in homogeneous
spaces—a subject with deep connections to both number theory and ergodic theory.

The survey is organized as follows:

• In Section 2, we study counting problems for primitive lattice points in the Euclidean
plane. This discussion serves as a motivation and provides a simpler model for the
more complicated geometric problems that follow.

• In Section 3, we review the background on hyperbolic surfaces, Teichmüller spaces,
and simple closed curves. Definitions, examples, and basic properties will be provided
to ensure that the reader is well-prepared for later sections.

• In Section 4, we discuss Mirzakhani’s celebrated formulas for the Weil–Petersson vol-
umes of moduli spaces and her integration formulas over moduli space, which play a
central role in her proof.

• In Section 5, we present a complete proof of Theorem 1.1.

• In Section 6, we briefly survey several subsequent counting results for closed curves on
surfaces and other related topics that have emerged since Mirzakhani’s groundbreaking
work.

Throughout this survey, we assume some familiarity with the basic concepts of hyperbolic
geometry and Riemann surfaces, but we will strive to provide all necessary definitions and
examples. Our hope is that even students from universities with a less advanced background
in these topics will find the exposition clear and enlightening.

2 Counting Primitive Lattice Points in the Euclidean

Plane

Outline and Motivation

In this section we study a classical counting problem in the Euclidean plane: How many
primitive lattice points lie inside a large ball? (A primitive lattice point is one that, in analogy
with prime numbers, cannot be obtained by scaling another lattice point by a nontrivial
integer.) This counting problem not only is interesting in its own right but also serves as
an accessible model for more advanced counting problems on hyperbolic surfaces (which we
will discuss later).

Basic Definitions and Examples

Lattice in R2: A lattice Λ in R2 is a discrete subgroup of R2 that spans the entire space.
The standard example is

Z2 = {(a, b) ∈ R2 : a, b ∈ Z}.
A lattice can be thought of as the set of all integer linear combinations of two linearly
independent vectors in R2.
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Primitive Lattice Point: A vector v ∈ Z2 is said to be primitive if it cannot be written as
an integer multiple (with integer factor greater than 1) of another vector in Z2. Equivalently,
if

v = (a, b) with a, b ∈ Z,

then v is primitive if and only if gcd(a, b) = 1. We denote the set of all primitive lattice
points by

Z2
prim = {v ∈ Z2 : gcd(v) = 1}.

Example: The vector (3, 5) is primitive because gcd(3, 5) = 1; however, the vector (4, 6) is
not primitive because gcd(4, 6) = 2 (indeed, (4, 6) = 2 (2, 3) and (2, 3) is primitive).

Euclidean Norm: For any x = (x1, x2) ∈ R2, the Euclidean norm is defined by

∥x∥ =
√
x21 + x22.

Counting Function: For each L > 0, we define the counting function

p(Z2, L) := #{v ∈ Z2
prim : ∥v∥ ≤ L},

which counts the number of primitive lattice points inside (or on) the circle (or ball) of radius
L centered at the origin.

x

y

Figure 1: The integer lattice Z2 in R2. The blue dots are the lattice points; note that, for
instance, (1, 2) is primitive whereas (2, 4) is not.

The Asymptotic Counting Problem

Much like the prime number theorem concerns the asymptotic behavior of π(N) (the number
of primes up to N), we are interested in the asymptotic behavior of p(Z2, L) as L→ ∞. The
main result we wish to discuss is the following:
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Theorem 2.1 (2.1). As L→ ∞,

p(Z2, L) ∼ 6

π
L2.

This means that

lim
L→∞

p(Z2, L)

L2
=

6

π
.

Intuitive Explanation: The density of lattice points in R2 is roughly uniform. In a circle
of radius L, there are about πL2 lattice points. However, many of these are not primitive
(for instance, every even point is a multiple of a smaller lattice point). A classical result in
number theory shows that the probability that two randomly chosen integers are coprime
is 6

π2 . Thus, one expects that approximately a 6
π2 fraction of the πL2 lattice points are

primitive. This yields an expected count of

6

π2
· πL2 =

6

π
L2.

Our goal is to rigorously justify this asymptotic formula.

A Measure-Theoretic Approach

A powerful method to study such counting problems is via measures. For each L > 0, define
a counting measure on R2 associated with primitive lattice points:

νprimL :=
1

L2

∑
v∈Z2

prim

δ 1
L
v,

where δx denotes the Dirac measure at x.

Observation: If B ⊂ R2 is the unit ball centered at the origin (i.e. B = {x ∈ R2 : ∥x∥ ≤
1}), then

νprimL (B) =
1

L2
#{v ∈ Z2

prim : ∥v∥ ≤ L} =
p(Z2, L)

L2
.

Thus, studying the weak-∗ limit of νprimL as L → ∞ is equivalent to understanding the
asymptotic behavior of p(Z2, L)/L2.

Weak-∗ Convergence: It is expected (and can be proved) that

lim
L→∞

νprimL =
6

π2
ν,

where ν is the standard Lebesgue measure on R2. In other words, for any continuous function
f with compact support,

lim
L→∞

∫
R2

f dνprimL =
6

π2

∫
R2

f dν.

Taking f to be the indicator function of the unit ball (after approximating by continuous
functions) gives

lim
L→∞

p(Z2, L)

L2
=

6

π2
ν(B) =

6

π2
· π =

6

π
.

30



A Related Counting Measure:

For comparison, we also define the counting measure on the full lattice Z2 by

νL :=
1

L2

∑
v∈Z2

δ v
L
. (2.1)

By a similar scaling argument, one can show that

lim
L→∞

νL = ν

in the weak-∗ sense. This means that the normalized counting measure on the full lattice
converges to Lebesgue measure. (For a rigorous treatment, see Exercise ??.) The primitive
counting measure νprimL is then obtained by restricting νL to the subset Z2

prim and the result
follows from the fact that the density of primitive points in Z2 is 6

π2 .

Conclusion and Theorem Statement

Summarizing the discussion, we have shown (or at least motivated rigorously) that the
number of primitive lattice points in Z2 of Euclidean norm at most L satisfies

p(Z2, L) ∼ 6

π
L2,

or equivalently,

lim
L→∞

p(Z2, L)

L2
=

6

π
.

Theorem 2.2 (2.1). As L→ ∞,

p(Z2, L) ∼ 6

π
L2.

That is,

lim
L→∞

p(Z2, L)

L2
=

6

π
.

Motivation and Future Directions: The techniques used in this section—especially
the measure-theoretic approach and the idea of weak-∗ convergence—serve as a model for
more complex counting problems. Later (in Section 5), we will see how analogous ideas are
applied to count simple closed geodesics on hyperbolic surfaces. In that setting, many of
the underlying ideas from the geometry of numbers (e.g., scaling, density arguments, and
ergodic theory) reappear in a rich geometric and dynamical context.

Additional Exercises

Exercise 2.3 (2.2). What would happen with the weak-∗ convergence in (??) if, in the def-
inition of the counting measures νL in (2.2), one replaced Z2 by a finite index subgroup of
Z2?

In other words, what would happen with (??) if we considered a finite index subgroup of
Z2 instead of all Z2 in the definition of the counting measures (νL)L>0 in (2.2)?
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Exercise Statement

Recall that for the full lattice Z2 the counting measures are defined by

νL :=
1

L2

∑
v∈Z2

δ 1
L
v,

and one has
lim
L→∞

νL = ν

(with respect to the weak-∗ topology), where ν is the Lebesgue measure on R2.

The exercise asks: What would happen with νL if we considered a finite-index subgroup
Γ ⊂ Z2 instead of Z2 in the definition of the counting measures?

Solution

Let Γ ⊂ Z2 be a finite-index subgroup. Denote the index by

[Z2 : Γ] = m <∞.

We define the corresponding counting measures by

νΓL :=
1

L2

∑
v∈Γ

δ 1
L
v.

We wish to show that

lim
L→∞

νΓL =
1

m
ν,

in the weak-∗ topology. In other words, for every continuous, compactly supported function
f : R2 → R,

lim
L→∞

∫
R2

f(x) dνΓL(x) =
1

m

∫
R2

f(x) dν(x).

Step 1. Partitioning Z2 via Cosets of Γ

Since Γ has finite index m in Z2, we can write

Z2 = Γ ∪ (γ2 + Γ) ∪ · · · ∪ (γm + Γ),

where γ1 = 0 and γ2, . . . , γm are representatives of the distinct cosets. Therefore, any sum
over Z2 can be broken into a sum over the cosets.
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Step 2. Relating νΓL to νL

Recall that for the full lattice,

νL =
1

L2

∑
v∈Z2

δ 1
L
v.

Using the coset decomposition, we have

νL =
1

L2

m∑
k=1

∑
v∈Γ

δ 1
L
(v+γk)

.

Notice that translation by a fixed vector is a continuous operation on measures. In fact, if
we denote by Ty the translation operator defined by Ty(x) = x+ y, then

δ 1
L
(v+γk)

= Tγk/L(δv/L).

Thus, we can rewrite

νL =
m∑
k=1

Tγk/L

(
1

L2

∑
v∈Γ

δv/L

)
=

m∑
k=1

Tγk/L
(
νΓL
)
.

Step 3. Passing to the Limit

We know that νL → ν as L→ ∞ and note that for each fixed k the translation Tγk/L tends
to the identity as L→ ∞ (since γk/L→ 0). In the weak-∗ topology, translations by vectors
converging to 0 do not change the limit. Therefore,

lim
L→∞

Tγk/L
(
νΓL
)
= lim

L→∞
νΓL.

Since there are m such terms, we obtain

lim
L→∞

νL = m · lim
L→∞

νΓL.

But the left-hand side is known to converge to ν. Therefore, we must have

m · lim
L→∞

νΓL = ν,

which implies

lim
L→∞

νΓL =
1

m
ν.
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Conclusion

Thus, if we replace Z2 by a finite-index subgroup Γ (of index m) in the definition of the
counting measures, then the rescaled measures converge in the weak-∗ topology to

1

m
ν,

i.e., a constant multiple 1
m

of the Lebesgue measure.

Answer: If Γ ⊂ Z2 is a finite-index subgroup of index m, then the counting measures

νΓL =
1

L2

∑
v∈Γ

δ 1
L
v

satisfy

lim
L→∞

νΓL =
1

m
ν,

in the weak-∗ topology.

2.1 Invariance of Counting Measures

Motivation and Overview

In previous sections we have defined counting measures that record the distribution of prim-
itive lattice points in the Euclidean plane. Recall that a vector in Z2 is called primitive if
its coordinates have no common factor greater than 1. For each positive real number L, we
defined the counting measure

νprimL :=
1

L2

∑
v∈Z2

prim

δ v
L
,

where δx denotes the Dirac measure at the point x and Z2
prim is the set of primitive points

in Z2.
Our goal in this section is to study the asymptotic behavior of the sequence (νprimL )L>0

in the weak-∗ topology and, in particular, to show that every weak-∗ limit point is invariant
under the natural action of the group

SL(2,Z) =
{(

a b
c d

)
∈ Mat2×2(R) : a, b, c, d ∈ Z, ad− bc = 1

}
.

This invariance property plays a crucial role in proving further asymptotic results (such as
the equidistribution of these counting measures) and ultimately guides the proof of analogous
counting theorems for closed geodesics on hyperbolic surfaces.
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Preliminary Definitions and Examples

Definition 2.4 (Dirac Measure). Given a point x ∈ R2, the Dirac measure δx is defined by

δx(A) =

{
1, if x ∈ A,

0, if x /∈ A,

for any measurable set A ⊂ R2.

Example 2.5. For example, if x = (0, 0) and A is the unit disk B(0, 1) = {y ∈ R2 : ∥y∥ ≤ 1},
then δ(0,0)(B(0, 1)) = 1 because the origin is inside the disk.

Definition 2.6 (Weak-∗ Convergence of Measures). A sequence of locally finite Borel mea-
sures (µL)L>0 on R2 is said to converge weak-∗ (or vaguely) to a measure µ if, for every
continuous function f : R2 → R with compact support,

lim
L→∞

∫
R2

f dµL =

∫
R2

f dµ.

Example 2.7. If µ is the Lebesgue measure on R2, then one expects that as L → ∞ the
scaled counting measure

νL :=
1

L2

∑
v∈Z2

δv/L

converges weak-∗ to µ. (See Exercise 2.14 for details.)

Definition 2.8 (Counting Measure for Primitive Lattice Points). For each L > 0, define

νprimL :=
1

L2

∑
v∈Z2

prim

δv/L,

where Z2
prim = {(a, b) ∈ Z2 : gcd(a, b) = 1}.

Example 2.9. For L = 2, the set 1
2
Z2

prim consists of all points of the form (a/2, b/2) with
gcd(a, b) = 1. For instance, (1/2, 0), (1/2, 1/2), and (0, 1/2) are all present, while (1, 0) also
appears (since (2, 0) is not primitive, it is not scaled in this measure).

Invariance under the Action of SL(2,Z)

The Group SL(2,Z): The group

SL(2,Z) :=
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}

acts on R2 by linear transformations. That is, for a matrix M =

(
a b
c d

)
and a vector

x ∈ R2, the action is given by

M · x =

(
a b
c d

)
x.
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Why Invariance is Important: Understanding the invariance properties of a sequence of
measures is crucial for studying its limit behavior. In our setting, we wish to prove that any
weak-∗ limit point of the sequence (νprimL )L>0 is invariant under the action of SL(2,Z). This
invariance property implies that the limiting measure cannot favor any particular direction
or location; it must be “evenly spread out” in a way that reflects the symmetry of the lattice.

Key Proposition.

Proposition 2.10. Every weak-∗ limit point of the sequence (νprimL )L>0 is invariant under
the natural action of SL(2,Z) on R2.

Proof. Let µ be a weak-∗ limit point of (νprimL )L>0; that is, there exists a sequence Lk → ∞
such that νprimLk

converges weak-∗ to µ.
Take any matrix M ∈ SL(2,Z) and any continuous, compactly supported function f :

R2 → R. Because M acts linearly and preserves the lattice Z2 (indeed, M(Z2
prim) = Z2

prim),
we have ∫

R2

f(Mx) dνprimLk
(x) =

1

L2
k

∑
v∈Z2

prim

f
(
M

v

Lk

)
.

Since M permutes the set Z2
prim, the above sum equals

1

L2
k

∑
w∈Z2

prim

f

(
w

Lk

)
=

∫
R2

f(x) dνprimLk
(x).

Taking the limit as k → ∞ (and using the weak-∗ convergence of νprimLk
to µ) gives∫

R2

f(Mx) dµ(x) =

∫
R2

f(x) dµ(x).

Since f was an arbitrary test function, this shows that the push-forward measureM∗µ equals
µ. In other words, µ is invariant under the action of M . Since M was an arbitrary element
of SL(2,Z), the limit measure µ is SL(2,Z)-invariant.

Example 2.11. Consider the measure νL defined by

νL :=
1

L2

∑
v∈Z2

δv/L.

It can be shown (via geometric arguments) that νL converges weak-∗ to the Lebesgue measure
on R2. Since the Lebesgue measure is invariant under all translations and rotations (and in
particular under the linear action of SL(2,Z)), this provides an example of a limit measure
that is invariant. A similar invariance holds for νprimL (with the appropriate normalization),
and the above proposition confirms this invariance in full generality.
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Why Is This Invariance Useful?

Once we know that every weak-∗ limit point of the sequence (νprimL )L>0 is SL(2,Z)-invariant,
we can deduce several important facts:

1. Uniqueness: The only locally finite, translation (or, more generally, SL(2,Z))-invariant
measure on R2 is a constant multiple of the Lebesgue measure. (This follows from stan-
dard uniqueness results in measure theory and the geometry of R2.)

2. Equidistribution: It then follows that the counting measures νprimL must become
equidistributed in R2 as L → ∞, meaning they converge (in the weak-∗ sense) to the
Lebesgue measure up to a constant.

3. Applications to Number Theory and Geometry: This invariance is a key in-
gredient in proving asymptotic formulas for p(Z2, L) (the number of primitive lattice
points in a ball of radius L). In particular, one eventually shows that

p(Z2, L) ∼ 6

π
L2.

Similar ideas also appear in the study of closed geodesics on hyperbolic surfaces.

Summary

To summarize, we have introduced the family of counting measures

νprimL :=
1

L2

∑
v∈Z2

prim

δv/L,

and we explained that, although it is not immediately obvious, every weak-∗ limit point of
this sequence is invariant under the linear action of the discrete group SL(2,Z) on R2. We
provided the following key result:

Proposition 2.12 (Invariance of Limit Points). Every weak-∗ limit point of the sequence
(νprimL )L>0 is invariant under the action of SL(2,Z) on R2.

This invariance is crucial for later applications, as it allows us to identify the limit measure
(up to a constant) as the Lebesgue measure, thereby proving equidistribution results for
primitive lattice points. The ideas presented here serve as a model for similar techniques
that will be applied to counting closed geodesics on hyperbolic surfaces later in the survey.

Exercise 2.3. Show that the SL(2,Z) orbit of the vector (1, 0) ∈ R2 is precisely Z2
prim ⊆

Z2. Conclude that any weak-∗ limit point of the sequence (νprimL )L>0 is SL(2,Z)-invariant.
Hint: Use Bézout’s identity for greatest common divisors.
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Solution to Exercise 2.3

Problem Restatement

Let Z2
prim ⊆ Z2 be the set of all primitive integer vectors, i.e., those (a, b) with gcd(a, b) = 1.

We wish to show that
SL(2,Z) · (1, 0) = Z2

prim,

i.e., the orbit of (1, 0) under the group SL(2,Z) is precisely the set of all primitive vectors in
Z2. Conclude that any weak-∗ limit point of the sequence

(
νprimL

)
L>0

is SL(2,Z)-invariant.

Part A. Why the SL(2,Z) Orbit of (1, 0) is Z2
prim

We need to prove two directions:

1. If a vector v ∈ Z2 lies in the SL(2,Z)-orbit of (1, 0), then v is primitive (i.e.,
the gcd of its coordinates is 1).

2. If v ∈ Z2 is primitive, then v lies in the orbit of (1, 0).

We denote by SL(2,Z) the set of 2× 2 integer matrices with determinant 1.

1. Orbit Vectors are Always Primitive

Take any M ∈ SL(2,Z). By definition,

M =

(
a b

c d

)
with a, b, c, d ∈ Z and det(M) = ad− bc = 1.

Now compute

M · (1, 0) =
(
a b

c d

)(
1
0

)
=

(
a
c

)
.

Thus, any vector in the orbit has the form (a, c) (i.e., the first column of M).
Now, suppose for the sake of contradiction that gcd(a, c) > 1. Let p be a common divisor

with p > 1. Then p divides both a and c, and hence it divides any linear combination of
these numbers. In particular, p divides

ad− bc,

but since det(M) = ad− bc = 1, it would follow that p divides 1, which is impossible unless
p = 1. Thus, gcd(a, c) = 1. This shows that

M(1, 0) ∈ Z2
prim for every M ∈ SL(2,Z),

so that
SL(2,Z) · (1, 0) ⊆ Z2

prim.
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2. Every Primitive Vector is in the Orbit

Conversely, let (x, y) ∈ Z2
prim, meaning that gcd(x, y) = 1. We wish to find a matrix

M ∈ SL(2,Z) such that
M(1, 0) = (x, y).

That is, we want

(
x
y

)
to be the first column of M .

Consider a matrix of the form

M =

(
x ∗
y ∗

)
.

For M to belong to SL(2,Z), we need all entries to be integers and the determinant to be 1.

That is, if the second column is

(
α
β

)
, we require

det(M) = xβ − αy = 1.

Use of Bézout’s Identity. Since gcd(x, y) = 1, Bézout’s identity guarantees that there
exist integers r and s such that

r x+ s y = 1.

We can choose these r and s and define the matrix

M =

(
x −s
y r

)
.

Then, the determinant is

det(M) = x · r − (−s) · y = xr + sy = 1,

by our choice of r and s. Thus, M ∈ SL(2,Z). Moreover,

M(1, 0) =

(
x
y

)
,

so (x, y) lies in the orbit of (1, 0).
Altogether, we have shown that if (x, y) is primitive then

(x, y) ∈ SL(2,Z) · (1, 0),

so that
Z2

prim ⊆ SL(2,Z) · (1, 0).

Combined Conclusion

From the two inclusions we deduce

SL(2,Z) · (1, 0) = Z2
prim,

i.e., the orbit of (1, 0) under SL(2,Z) is precisely the set of all primitive integer vectors.
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Part B. Invariance of any Weak-∗ Limit Point of
(
νprimL

)
Recall that νprimL is defined by

νprimL =
1

L2

∑
v∈Z2

prim

δv/L,

where δx denotes the Dirac measure at x ∈ R2.

The Support is the Orbit. From Part A we have shown that

Z2
prim = SL(2,Z) · (1, 0).

Hence, the measure νprimL can be thought of as

νprimL =
1

L2

∑
v ∈ SL(2,Z)·(1,0)

δv/L.

Why Invariance Follows. Suppose that µ is a weak-∗ limit of the sequence {νprimL }L>0.
We wish to show that µ is invariant under the action of SL(2,Z); that is, for every g ∈
SL(2,Z) we have

g∗µ = µ,

where g∗µ denotes the pushforward of µ under the transformation g. Concretely, for any
continuous and compactly supported test function ϕ,∫

R2

ϕ(x) d(g∗µ)(x) =

∫
R2

ϕ
(
g(x)

)
dµ(x).

The key observation is that each measure νprimL is itself SL(2,Z)-invariant. To see this,
note that the action of any g ∈ SL(2,Z) simply permutes the primitive vectors in Z2

prim.
Therefore,

g∗ν
prim
L = νprimL for each L > 0.

Since pushforward is continuous with respect to the weak-∗ topology, if µ is a limit point
of νprimL as L→ ∞, then

g∗µ = g∗

(
lim
L→∞

νprimL

)
= lim

L→∞
g∗
(
νprimL

)
= lim

L→∞
νprimL = µ.

Thus, µ is SL(2,Z)-invariant.

Conclusion. Every weak-∗ limit point of the sequence
(
νprimL

)
must be invariant under the

full group SL(2,Z).
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Final Summary

1. Orbit Characterization:

SL(2,Z) · (1, 0) = {(a, c) ∈ Z2 : gcd(a, c) = 1} = Z2
prim.

• Proof Idea:

– (⊇): For any M ∈ SL(2,Z), the first column (a, c) = M(1, 0) satisfies
gcd(a, c) = 1.

– (⊆): Conversely, if (x, y) is primitive, Bézout’s identity provides integers r, s
such that rx+ sy = 1, allowing the construction of

M =

(
x −s
y r

)
∈ SL(2,Z)

with M(1, 0) = (x, y).

2. SL(2,Z)-Invariance of Limit Measures:

• Each measure νprimL is supported on the orbit Z2
prim and is invariant under SL(2,Z)

(since the group action merely permutes the primitive vectors).

• Consequently, any weak-∗ limit µ of {νprimL } is also SL(2,Z)-invariant.

This completes the solution.
Exercise 2.3 ensures that any weak-∗ limit point of the sequence (νprimL )L>0 is SL(2,Z)-

invariant. Using ergodic theory we will show this property greatly constrains the possible
weak-∗ limit points.

2.2 Ergodic Theory and Invariance of Measures

In many areas of mathematics—including dynamics, number theory, and geometry—it is
crucial to study measures that are invariant under the action of a group. In this section
we introduce some of the basic concepts of ergodic theory and explain why the notion of
invariance is important. We will include precise definitions, illustrative examples, and key
propositions with proofs so that every statement is clear.

2.2.1 Basic Definitions and Motivation

Definition 2.13 (Measure-Preserving Action). Let (X,A) be a measurable space and let G
be a countable group. An action of G on X is a map

G×X → X, (g, x) 7→ g · x,

such that for all g, h ∈ G and x ∈ X,

e · x = x and g · (h · x) = (gh) · x,
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where e denotes the identity element of G.
A σ-finite measure µ on (X,A) is said to be measure-preserving (with respect to the

action of G) if for every g ∈ G and every measurable set A ∈ A,

µ(g.A) = µ(A),

where we define
g.A := {g · x : x ∈ A}.

Example 2.14 (Translation on the Circle). Let X = R/Z be the unit circle (viewed as [0, 1]
with the endpoints identified), and let G = Z act on X by translation:

n · x = x+ nα (mod 1),

for some fixed real number α. If we equip X with the Lebesgue measure µ (which is the
natural measure on the circle), then one can check that µ is measure-preserving. Indeed,
translating a set by a fixed number does not change its length.

Definition 2.15 (Invariant Measure). A measure µ on (X,A) is said to be G-invariant if
it is preserved under the action of every element of G; that is, for all g ∈ G and for every
measurable set A ∈ A,

µ(g.A) = µ(A).

Definition 2.16 (Ergodicity). Let µ be a G-invariant, σ-finite measure on (X,A). We say
that µ is G-ergodic if there are no nontrivial G-invariant measurable subsets of X. More
precisely, if A ∈ A is such that

g.A = A for all g ∈ G,

then either
µ(A) = 0 or µ(X \ A) = 0.

An equivalent formulation is: µ is G-ergodic if every measurable function f : X → R that
is invariant under the action of G (i.e., f(g · x) = f(x) for all g ∈ G and almost every x) is
constant almost everywhere.

Example 2.17 (Irrational Rotation). Consider again the circle X = R/Z with Lebesgue
measure µ and let G = Z act by n · x = x + nα (mod 1) where α is irrational. In this
case, it can be shown that µ is not only invariant but also ergodic. The reason is that any
measurable function f that is invariant under all such rotations must be constant almost
everywhere; otherwise, one could partition the circle into two invariant sets, contradicting
ergodicity.

2.2.2 Why Ergodicity and Invariance Matter

Understanding invariant and ergodic measures is central in many areas of dynamics and
geometry. For instance, when studying sequences of counting measures (such as those arising
in lattice point counting or in the distribution of closed geodesics), one wishes to know
whether these measures, in the limit, “spread out” evenly over the space. If the limit
measure is invariant (and under additional assumptions, ergodic), then by classical results
it must be a constant multiple of a “natural” measure (for example, the Lebesgue measure).
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Proposition 2.18 (Uniqueness of Invariant Measures). Let µ be a locally finite Borel mea-
sure on R2 that is invariant under all translations (or under a group that acts densely in the
translation group). Then there exists a constant c ≥ 0 such that

µ = c ν,

where ν denotes the Lebesgue measure on R2.

Proof. The proof uses the fact that translations act ergodically on R2 with respect to the
Lebesgue measure. One shows that the measure of a fundamental domain (such as the unit
square) completely determines the measure, and translation invariance forces the measure to
be uniformly distributed. A detailed proof can be found in standard texts on measure theory
and ergodic theory; the key idea is to use the invariance to partition R2 into translates of a
unit square and then show that the measure must be proportional to the area.

Example 2.19 (Counting Measures on the Lattice). Consider the counting measure on the
integer lattice

νL :=
1

L2

∑
v∈Z2

δv/L.

It can be shown that νL converges (in the weak-∗ sense) to the Lebesgue measure ν as
L → ∞. In fact, by a simple scaling argument, the measure of a fixed compact set (like
the unit square) under νL converges to its area. Notice that νL is invariant under the
natural action of Z2 (and hence under SL(2,Z) acting appropriately), which is one of the
key properties used to identify its limit.

2.2.3 Characterizing G-Invariant Measures Relative to an Ergodic Measure

A useful application of ergodic theory is the following characterization: Suppose ν is a G-
ergodic measure on (X,A) and µ is anotherG-invariant measure that is absolutely continuous
with respect to ν (denoted µ ≪ ν). Then, ergodicity forces µ to be a constant multiple of
ν. In symbols,

µ = c ν for some c ≥ 0.

This fact is a cornerstone in many equidistribution results.

Theorem 2.20 (Ergodic Decomposition for Absolutely Continuous Measures). Let ν be a
G-ergodic measure on (X,A) and let µ be a G-invariant measure with µ ≪ ν. Then there
exists a constant c ≥ 0 such that

µ = c ν.

Proof. Since µ ≪ ν, by the Radon–Nikodym theorem there exists a measurable function
f : X → [0,∞) such that

µ(A) =

∫
A

f dν for all A ∈ A.

The invariance of µ and ν under the action of G implies that for any g ∈ G and any
measurable function f , ∫

X

f(x) dµ(x) =

∫
X

f(g · x) dµ(x).
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By substituting the Radon–Nikodym derivative and performing a change of variables (using
the measure-preserving property), one can show that f(g · x) = f(x) for ν-almost every
x ∈ X. In other words, f is G-invariant. Since ν is ergodic, every G-invariant function must
be constant almost everywhere. Thus, there exists a constant c ≥ 0 such that f(x) = c for
ν-almost every x, and hence µ = c ν.

Exercise 2.4. Let (X,A) be a measurable space and G be a countable group acting
on (X,A) by measure-preserving transformations. Suppose that ν is a G-ergodic measure
on (X,A) and that µ is a G-invariant measure on (X,A) that is absolutely continuous with
respect to ν. Show that µ is a non-negative constant multiple of ν.

That is, please show that if ν is the Lebesgue measure on R2 and G = Z2 acts by
translations, then any G-invariant measure that is absolutely continuous with respect to ν
is a constant multiple of ν.

Hint: Show that the Radon-Nikodym derivative of µ with respect to ν is G-invariant
and use the G-ergodicity of ν to show this derivative is constant.

Solution Explanation

We have:

• A countable group G.

• A measurable space
(
X,A

)
.

• A measure ν on
(
X,A

)
which is G-ergodic.

• A measure µ on
(
X,A

)
which is G-invariant (i.e., µ(gA) = µ(A) for all g ∈ G and

A ∈ A).

• µ is absolutely continuous with respect to ν (written µ≪ ν).

We want to prove that µ must be of the form

µ = c ν

for some non-negative constant c.

Step 1: The Radon–Nikodým Derivative

Because µ is absolutely continuous with respect to ν, by the Radon–Nikodým theorem there
exists a Radon–Nikodým derivative (often denoted by a density)

f =
dµ

dν

such that for every measurable set A ∈ A,

µ(A) =

∫
A

f dν.
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Equivalently, for any (nonnegative) measurable function φ, we have∫
φdµ =

∫
φf dν.

The function f is measurable and nonnegative (since µ and ν are nonnegative measures).

Step 2: Showing f is G-Invariant Almost Everywhere

We want to show that f is G-invariant ν-almost everywhere; in symbols,

f(gx) = f(x) for ν-almost every x ∈ X, for all g ∈ G.

To see why, fix g ∈ G. Consider any (nonnegative) measurable function φ. Because µ is
G-invariant, we have∫

X

φ(x) dµ(x) =

∫
X

φ(x) dµ(x) (trivial equality).

But also, using the invariance of µ under the transformation x 7→ g−1x, we get∫
X

φ(x) dµ(x) =

∫
X

φ
(
g−1y

)
dµ(y).

(Here we replaced the dummy variable x by g−1y.)
On the other hand, by the Radon–Nikodým relationship for µ in terms of ν,∫

X

φ(x) dµ(x) =

∫
X

φ(x) f(x) dν(x),

and ∫
X

φ
(
g−1y

)
dµ(y) =

∫
X

φ
(
g−1y

)
f(y) dν(y).

Putting these equalities together yields∫
X

φ(x) f(x) dν(x) =

∫
X

φ
(
g−1y

)
f(y) dν(y).

Next, perform the change of variables x = g−1y (i.e., y = gx) in the right-hand integral.
Note that when ν is invariant under G (since the group acts by measure-preserving trans-
formations, we have ν(gA) = ν(A)), we have dν(y) = dν(gx) = dν(x). Thus,∫

X

φ
(
g−1y

)
f(y) dν(y) =

∫
X

φ(x) f
(
gx
)
dν(x).

Hence, ∫
X

φ(x) f(x) dν(x) =

∫
X

φ(x) f
(
gx
)
dν(x).
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Since φ is arbitrary, we get (by taking φ to be indicators or any suitable function) that

f(x) = f
(
gx
)

for ν-almost every x.

Because g ∈ G was arbitrary, this shows

f ◦ g = f ν-almost everywhere, for all g ∈ G.

In other words, f is a G-invariant function (almost everywhere with respect to ν).

Step 3: Using G-Ergodicity of ν to Conclude f is Constant Almost
Everywhere

Recall the definition of G-ergodicity of the measure ν:

A measure ν on (X,A) is G-ergodic if any G-invariant measurable set has either ν-
measure 0 or full ν-measure.

Equivalently, a standard result is that if ν is G-ergodic, then any G-invariant measurable
function must be constant ν-almost everywhere. The intuition is that, in an ergodic system,
there is no nontrivial decomposition of the space into smaller invariant pieces; thus any
quantity (function) that does not change under the group action must be essentially the
same value everywhere.

Since we have established that f is G-invariant almost everywhere, by the G-ergodicity
of ν it follows that f is a constant almost everywhere. In symbols, there exists c ∈ [0,∞)
such that

f(x) =
dµ

dν
(x) = c for ν-almost every x.

Step 4: Conclusion — µ is a Constant Multiple of ν

Given that dµ
dν

= c almost everywhere, for any measurable set A ∈ A,

µ(A) =

∫
A

dµ

dν
dν =

∫
A

c dν = c

∫
A

dν = c ν(A).

Hence,
µ(A) = c ν(A) for all A ∈ A.

Thus, we see that µ = cν as measures. Since both µ and ν are nonnegative measures, we
must have c ≥ 0.

Therefore, µ is a nonnegative constant multiple of ν, which is exactly what we
wanted to prove.
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Key Points Recap

1. Radon–Nikodým Derivative: Existence of f = dµ
dν

because µ≪ ν.

2. G-Invariance of f : Follows from µ being G-invariant and ν being preserved by the
group action.

3. Ergodicity: A G-invariant function under an ergodic measure must be constant al-
most everywhere.

4. Result: µ = cν.

This completes the proof in a fully detailed manner.

2.2.4 Summary

To summarize, we have defined the notions of G-invariance and G-ergodicity for measures
on a measurable space (X,A). We provided examples, such as the Lebesgue measure on the
circle under translation and counting measures on the lattice, to illustrate these concepts.
We then proved that any weak-∗ limit of a sequence of counting measures (such as those
arising from lattice point counting) inherits invariance properties. Finally, we stated and
proved the theorem that if a G-invariant measure is absolutely continuous with respect to a
G-ergodic measure, then it must be a constant multiple of that ergodic measure. These ideas
are fundamental in modern ergodic theory and have far-reaching applications in counting
problems and equidistribution theorems.

2.3 Ergodicity of the Lebesgue Measure and Portmanteau’s The-
orem

In this section, we present two important theorems. The first (Theorem 2.24) asserts that the
standard Lebesgue measure on R2 is ergodic under the linear action of the group SL(2,Z).
Although we do not prove it fully here, we discuss its relevance and outline where one can find
a more advanced proof (involving horocycle flows). The second result (Theorem 2.42) is the
well-known Portmanteau theorem, a classic statement in measure theory that characterizes
weak-∗ convergence of measures in various ways.

2.3.1 Ergodicity of the Lebesgue Measure under SL(2,Z)

Definition 2.21 (Linear Action of SL(2,Z)). Let SL(2,Z) be the group of 2 × 2 integer
matrices with determinant 1. Each element M ∈ SL(2,Z) defines a map

M : R2 → R2, x 7→M · x,

where · denotes matrix multiplication of the vector x. This action is said to be linear because
each M acts via a linear transformation.

47



Definition 2.22 (Ergodicity and Invariance). Given a σ-finite measure µ on R2 (with its
Borel σ-algebra), we say µ is invariant under SL(2,Z) if, for every M ∈ SL(2,Z) and every
measurable set A ⊂ R2, we have

µ(M · A) = µ(A).

If µ is invariant, we say µ is ergodic under the SL(2,Z)-action if there are no nontrivial
SL(2,Z)-invariant subsets (mod µ). Formally, if A ⊆ R2 is measurable and M · A = A for
all M ∈ SL(2,Z), then either µ(A) = 0 or µ(R2 \ A) = 0. Equivalently, any measurable
function f : R2 → R that satisfies f(M · x) = f(x) for all M ∈ SL(2,Z) and almost every x
must be constant µ-almost everywhere.

Example 2.23 (Translation Invariance vs. SL(2,Z)-Invariance). The standard Lebesgue
measure ν on R2 is invariant under all translations. However, SL(2,Z)-invariance means
invariance under integer linear transformations with determinant 1. One can check di-
rectly that ν is indeed invariant under SL(2,Z) because these transformations are volume-
preserving. Ergodicity is a stronger statement asserting that there is no nontrivial decom-
position of R2 into smaller SL(2,Z)-invariant sets.

Theorem 2.24 (Ergodicity of the Lebesgue Measure under SL(2,Z)). Let ν be the standard
Lebesgue measure on R2. Then ν is ergodic with respect to the linear action of SL(2,Z).

Sketch of Reasoning (without full proof):

• One can prove this result by connecting it to the horocycle flow on a certain 3-
dimensional manifold known as the unit tangent bundle of the modular surface SL(2,Z)\SL(2,R).
The horocycle flow is known, by classical theorems of Hedlund (and further works by
Dani, Ratner, etc.), to be ergodic with respect to certain measures.

• Equivalently, via geometry-of-numbers arguments, one shows that any function on
R2 invariant under all integer linear transformations (with determinant 1) must be
constant ν-almost everywhere.

Although the complete proof is beyond the scope of this survey, we mention it because
it is essential in understanding advanced counting problems for primitive lattice points and
related equidistribution statements.

2.3.2 Portmanteau’s Theorem

Next, we introduce a classic theorem from measure theory that provides multiple equivalent
formulations of weak-∗ convergence of measures. This result is crucial when dealing with
sequences of counting measures, as we often want to check convergence by testing it on
certain subsets rather than on a dense class of test functions.

Definition 2.25 (Weak-∗ Convergence of Measures). Let X be a metric space and let
{µL}L>0 be a sequence of (locally finite) Borel measures on X. We say µL converges in the
weak-∗ topology (or converges vaguely) to a Borel measure µ if, for every continuous function
f : X → R with compact support,

lim
L→∞

∫
X

f dµL =

∫
X

f dµ.
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Theorem 2.26 (Portmanteau’s Theorem). Let X be a metric space and let (µL)L>0 be a
sequence of locally finite Borel measures on X. Suppose µL → µ in the weak-∗ topology.
Then each of the following statements holds:

1. For every open set U ⊆ X,

µ(U) ≤ lim inf
L→∞

µL(U).

2. For every closed set F ⊆ X,

µ(F ) ≥ lim sup
L→∞

µL(F ).

3. For every compact set K ⊆ X such that µ(∂K) = 0,

lim
L→∞

µL(K) = µ(K). (2.5)

Motivation: While the definition of weak-∗ convergence is typically given in terms of
test functions, Theorem 2.42 (Portmanteau’s theorem) provides alternative ways to check
convergence by evaluating measures on open sets, closed sets, or compact sets with boundary
of measure zero. This is especially useful in many geometric and combinatorial counting
problems, where verifying convergence on a class of sets can be more direct than working
with continuous test functions.

Sketch of Proof: We outline why (1) implies (2) and how to get from the definitions of
weak-∗ convergence to (3). A full detailed proof can be found in standard measure theory
textbooks.

• Open Sets and lim inf: For an open set U , one can construct a sequence of continuous
functions fn supported in increasingly large compact subsets of U , approximating the
indicator function of U from below. Then weak-∗ convergence implies that∫

fn dµL →
∫
fn dµ

as L→ ∞. By letting n→ ∞, one obtains that µL(U) cannot dip too far below µ(U)
in the limit, yielding µ(U) ≤ lim infL→∞ µL(U).

• Closed Sets and lim sup: By applying a complementary argument (or using De
Morgan’s laws and the result for open sets), one can show that for a closed set F ,

µ(F ) ≥ lim sup
L→∞

µL(F ).

• Compact Sets with Negligible Boundary: If K ⊆ X is compact and µ(∂K) = 0,
one partitions K into its interior plus the boundary. Using the result for open sets and
closed sets, one compares µL(K) to µL(interior(K)) and µL(K), obtaining the desired
equality in the limit.

Example 2.27. If X = R2 and µL is a sequence of counting measures associated to certain
discrete sets (e.g., scaled versions of the integer lattice), checking that µL(K) → µ(K) for a
family of compact sets K whose boundaries are µ-negligible is often more straightforward.
Portmanteau’s theorem then concludes the weak-∗ convergence to µ.
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2.3.3 Conclusion and Relevance

Theorem 2.24 (ergodicity of Lebesgue measure under SL(2,Z)) plays a decisive role in many
lattice-point counting arguments, ensuring that certain limiting distributions must be con-
stant multiples of Lebesgue measure. Theorem 2.42 (Portmanteau’s theorem) complements
this by providing practical tests for verifying when a sequence of measures converges in the
weak-∗ sense.

Together, these theorems are important for understanding advanced counting results
(for example, counting primitive lattice points or counting closed geodesics on hyperbolic
surfaces). In more elaborate settings, one uses similar strategies, combining an ergodicity
statement (to identify the limiting measure up to constants) with a measure-convergence
statement (Portmanteau’s theorem) to show that a sequence of counting measures equidis-
tributes in the limit.

Exercise 2.7. Assuming the weak-∗ convergence in (2.3) holds, find counterexamples
to identity (2.5) in Theorem 2.6 when either K ⊆ R2 is not compact or does not satisfy
ν(∂K) = 0.

Below is a solution for Exercise 2.7, illustrating precisely how and why the identity in

µ(K) = lim
L→∞

µL(K)

(as stated in (2.5) of Theorem 2.6) can fail if either the set K ⊆ R2 is not compact or if its
boundary has positive Lebesgue measure. We assume we are working in R2 with Lebesgue
measure ν, and that {µL}L>0 is a sequence of locally finite Borel measures converging to ν
in the weak-∗ sense (as in (2.3)).

Recall of Theorem 2.6 (Portmanteau’s Theorem, specialized)

Let X be a metric space, and let {µL} be a sequence of locally finite Borel measures on X
converging to a Borel measure µ in the weak-∗ topology. Then:

1. For every open set U ⊆ X,

µ(U) ≤ lim inf
L→∞

µL(U).

2. If K ⊆ X is compact and satisfies µ(∂K) = 0, then

lim
L→∞

µL(K) = µ(K). (2.5)

The identity in (2.5) requires both that K be compact and that µ(∂K) = 0. If either of
these conditions fails, the conclusion need not hold. In what follows, we exhibit counterex-
amples for the two cases:

(1) K is not compact.

(2) K is compact (or at least bounded) but ν(∂K) ̸= 0.
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1. Counterexample when K is Not Compact

A simple (and somewhat extreme) example is to take

K = R2.

Note that R2 is not compact. Under Lebesgue measure, we have ν(R2) = +∞. On the
other hand, for each L the measure µL(R2) may be defined in such a way (for instance, when
using scaled counting measures on Z2) that it does not necessarily equal +∞ in a controlled
manner. In any case, the theorem (2.5) does not apply because the hypothesis requires K
to be compact.

Geometric Picture: The condition µ(∂K) = 0 together with the compactness of K
ensures that the mass assigned by µL to “nice bounded” regions converges to the mass of µ
on these regions. If K is unbounded (like R2), there is no control at infinity, and thus the
limit µL(K) → µ(K) need not hold.

2. Counterexample when ν(∂K) ̸= 0

Now we exhibit a set K that is bounded but whose boundary has positive Lebesgue measure,
so that the condition ν(∂K) = 0 is violated.

2a. Idea: The Boundary is “Too Large”

When the boundary ∂K has positive Lebesgue measure, Theorem 2.6 does not guarantee
that

lim
L→∞

µL(K) = µ(K).

A classic example is to take

K :=
{
(x, y) ∈ [0, 1]2 : x, y ∈ Q

}
,

i.e. the set of rational points in the unit square.

• Since K is countable, ν(K) = 0 (Lebesgue measure of a countable set is zero).

• However, the closure of K is the entire unit square:

K = [0, 1]2.

Since K has empty interior (it is nowhere dense), its boundary is

∂K = K \ int(K) = [0, 1]2.

Hence, ν(∂K) = ν([0, 1]2) = 1, which is not zero.

Thus, K fails the condition ν(∂K) = 0.
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2b. How This Breaks the Limit Identity

A typical sequence of measures converging to ν is given by the scaled counting measures on
Z2:

νL =
1

L2

∑
v∈Z2

δv/L.

It is known that νL ⇀ ν (weak-∗ convergence).
For the set K defined above, note the following:

• Every point in the support of νL is of the form v/L where v ∈ Z2. Since v1 and v2 are
integers, the coordinates v1/L and v2/L are rational.

• Therefore, every point in the scaled lattice (when v/L falls in [0, 1]2) belongs to K.
In particular, for every L, all lattice points in [0, 1]2 (i.e. those with 0 ≤ v1, v2 ≤ L)
contribute to νL(K).

Counting these points, we have approximately (L+ 1)2 points in [0, 1]2. Hence,

νL(K) =
1

L2

∣∣∣{v = (v1, v2) ∈ Z2 : 0 ≤ v1, v2 ≤ L}
∣∣∣ ≈ (L+ 1)2

L2
.

As L→ ∞,
(L+ 1)2

L2
→ 1.

Thus,
lim
L→∞

νL(K) = 1.

But by construction, ν(K) = 0. Therefore,

lim
L→∞

νL(K) = 1 ̸= 0 = ν(K).

This shows that the limit identity (2.5) fails for the set K because its boundary has positive
measure.

3. Conclusion

Answer to Exercise 2.7:

1. If K ⊂ R2 is not compact (for example, K = R2), the statement

lim
L→∞

µL(K) = µ(K)

need not hold since the theorem (2.5) only applies to compact sets.

2. If K ⊂ R2 is bounded but its boundary has positive Lebesgue measure (for example,

K = {(x, y) ∈ [0, 1]2 : x, y ∈ Q}),

then although K is bounded, we have ν(K) = 0 while νL(K) → 1 as L → ∞. Thus,
the identity (2.5) fails because the condition ν(∂K) = 0 is not satisfied.

These examples confirm that the extra hypotheses “K compact” and “µ(∂K) = 0” are
indispensable in Theorem 2.6 to guarantee that limL→∞ µL(K) = µ(K).
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2.4 Limit Points of Counting Measures

In this section, we consider a sequence {νprimL }L>0 of counting measures on R2 arising from
counting primitive lattice points (see earlier definitions). We wish to understand the possible
weak-∗ limit points of this sequence. Our ultimate goal is to show that any such limit point
must be a constant multiple of the Lebesgue measure.

2.4.1 Context and Setup

Primitive Lattice Points and Their Measures. Recall that a point (a, b) ∈ Z2 is called
primitive if gcd(a, b) = 1. One defines the measure

νprimL :=
1

L2

∑
v ∈Z2

prim

δv/L,

where δx denotes the Dirac measure at x. Intuitively, νprimL “places a mass” of 1
L2 at each

scaled primitive lattice point v/L. By studying the weak-∗ limit of {νprimL }, we can deduce
asymptotic formulas for counting functions of primitive points.

Earlier Results and Motivation.

• Exercise 2.3 (Group Orbit Argument): Demonstrates that Z2
prim is the SL(2,Z)-

orbit of the point (1, 0). From this fact, we concluded that any weak-∗ limit point of
{νprimL } must be SL(2,Z)-invariant.

• Exercise 2.4 (Absolute Continuity under Ergodicity): States that if ν is a G-
ergodic measure on a space X, then any measure µ absolutely continuous with respect
to ν (and also G-invariant) must be a constant multiple of ν.

• Theorem 2.5 (Ergodicity of Lebesgue Measure): Asserts that the standard
Lebesgue measure on R2 is ergodic with respect to the linear action of SL(2,Z). Al-
though not fully proved here, it is a deep statement often shown via the ergodicity of
the horocycle flow on SL(2,Z)\SL(2,R).

• Theorem 2.6 (Portmanteau’s Theorem): Provides various characterizations of
weak-∗ convergence in metric spaces, essential for controlling the behavior of counting
measures.

Using these results, we now show how to pin down the nature of any weak-∗ limit point
of {νprimL }.

2.4.2 Key Proposition

Proposition 2.28 (Nature of Limit Points). Every weak-∗ limit point νprim of the sequence
of counting measures {νprimL }L>0 is of the form

νprim = c · ν

for some constant c ≥ 0, where ν denotes the standard Lebesgue measure on R2.
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Idea of the Proof.

• First, from Exercise 2.3, we know that any limit measure νprim must be SL(2,Z)-
invariant.

• Next, from Theorem 2.5 (ergodicity of Lebesgue measure ν under SL(2,Z)), we see
that if νprim is absolutely continuous with respect to ν, then by Exercise 2.4 we must
have νprim = c ν.

• The main challenge is to show absolute continuity: i.e., if ν(A) = 0 for some Borel set
A, then νprim(A) = 0.

2.4.3 Proof of Proposition 2.28

Proof. Let νprim be a weak-∗ limit point of {νprimL }. By Exercise 2.3, νprim is SL(2,Z)-
invariant. By Theorem 2.5, the Lebesgue measure ν on R2 is ergodic under SL(2,Z).
According to Exercise 2.4, to conclude νprim = c ν, it suffices to show νprim is absolutely
continuous with respect to ν. In other words, we must show that if A ⊂ R2 is a Borel set
with ν(A) = 0, then νprim(A) = 0.

Step 1: Covering by small squares. Let A ⊆ R2 be such that ν(A) = 0. Fix any δ > 0.
Because ν (Lebesgue measure) is outer regular, we can find a countable collection of open
squares {Bi}i∈N covering A such that

A ⊆
⋃
i∈N

Bi and
∑
i∈N

ν(Bi) ≤ δ. (2.6)

Step 2: Estimating the measure of squares under νprimL . To control νprim(A), we first
estimate νprimL (B) for an arbitrary open square B ⊂ R2. Write ϵ > 0 for the side length of
B. Observe that

νprimL (B) ≤ νL(B) =
1

L2
#{Z2 ∩ (L ·B)}, (2.7)

where L ·B is an open square of side length Lϵ. Assume Lϵ ≥ 1 so that L ·B is large enough
to contain some lattice points. We construct the set S ⊂ R2 by placing disjoint open squares
of side length 1

2
centered at each integer point v ∈ Z2 ∩ (L ·B). Thus

S ⊆ B′

for some open square B′ ⊂ R2 of side length Lϵ+ 1. Therefore,

ν(S) ≤ ν(B′) = (Lϵ+ 1)2 ≤ 4L2ϵ2 = 4L2 ν(B).

On the other hand, each of these disjoint sub-squares of side length 1
2
has area 1

4
. Hence∑

v∈Z2∩(L·B)

1

4
≤ ν(S).
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It follows that
#{Z2 ∩ (L ·B)}

4
≤ ν(S) ≤ 4L2 ν(B).

Combining this with (??) gives

νprimL (B) ≤ νL(B) =
#(Z2 ∩ (L ·B))

L2
≤ 16L2 ν(B)

L2
= 16 ν(B).

Taking lim sup as L→ ∞,
lim sup
L→∞

νprimL (B) ≤ 16 ν(B). (2.9)

Step 3: Passing to the weak-∗ limit. Recall that νprim is a weak-∗ limit of νprimL . By
the subadditivity of measures,

νprim(A) ≤
∑
i∈N

νprim(Bi). (2.10)

From Portmanteau’s theorem (Theorem 2.6), for each Bi one obtains

νprim(Bi) ≤ lim inf
L→∞

νprimL (Bi) ≤ lim sup
L→∞

νprimL (Bi). (2.11)

Then (??) says
lim sup
L→∞

νprimL (Bi) ≤ 16 ν(Bi). (2.12)

Hence,
νprim(Bi) ≤ 16 ν(Bi).

Summing over i ∈ N and using
∑

i ν(Bi) ≤ δ from (??) gives

νprim(A) ≤
∑
i∈N

16 ν(Bi) ≤ 16 δ.

Since δ > 0 is arbitrary, we deduce νprim(A) = 0. This proves that νprim is absolutely
continuous with respect to ν.

Step 4: Concluding νprim = cν. Because νprim is SL(2,Z)-invariant and absolutely contin-
uous with respect to the SL(2,Z)-ergodic measure ν, Exercise 2.4 implies there is a constant
c ≥ 0 such that νprim = c ν. This completes the proof.

Example 2.29 (Interpretation in Counting Primitive Points). The conclusion νprim = c · ν
means that, in the limit, the distribution of scaled primitive points in R2 looks exactly like
a constant multiple of the Lebesgue measure. By evaluating both sides on the unit ball, one
sees that

lim
L→∞

p(Z2, L)

L2
= lim

L→∞
νprimL ({∥x∥ ≤ 1}) = νprim({∥x∥ ≤ 1}) = c ν({∥x∥ ≤ 1}) = cπ.

Hence p(Z2, L) ∼ cπ L2. One can calculate c = 6
π2 by other means (e.g., geometry of

numbers), thereby obtaining the classical formula

p(Z2, L) ∼ 6

π
L2.
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2.4.4 Summary and Outlook

Using a combination of group actions, ergodicity arguments, and measure-theoretic methods
(like Portmanteau’s theorem), we have shown that any weak-∗ limit of the primitive counting
measures must be absolutely continuous with respect to the Lebesgue measure and hence
must be a constant multiple of it. This result underpins many deeper counting theorems,
showing that the limiting distribution of scaled primitive lattice points (or analogous objects
in geometry) is uniform up to a factor.

2.5 Unimodular Lattices and Averaging Arguments

In earlier sections, we analyzed the distribution of primitive vectors in the integer lattice
Z2. Our next goal is to extend these ideas to more general unimodular lattices in R2 and
to employ a powerful averaging argument to show that a certain constant (arising in our
counting measure analysis) is both positive and independent of the particular limit measure
under consideration. In other words, we wish to show that all limit points (in the weak-
∗ sense) of the sequence of counting measures for primitive lattice points have the same
coefficient when expressed as a multiple of Lebesgue measure.

2.5.1 Definitions and Geometry of Unimodular Lattices

Definition 2.30 (Lattice). A lattice Λ ⊆ R2 is a subgroup of R2 (viewed as a group under
addition) such that Λ is generated by two linearly independent vectors. Equivalently, there
exist α, β ∈ R2 spanning R2 such that

Λ = {mα + nβ | m,n ∈ Z}.

We say α, β form an R-basis for R2 and a Z-basis for Λ.

Definition 2.31 (Marking of a Lattice). A marking of a lattice Λ is a choice of a positively
oriented R-basis (v1, v2) of R2 such that

Λ = spanZ(v1, v2).

Positively oriented means det(v1, v2) > 0, where det is the usual determinant in R2.

Definition 2.32 (Covolume and Unimodular Lattice). If Λ = spanZ(v1, v2), we define its
covolume by

covol(Λ) :=
∣∣det(v1, v2)∣∣.

This quantity does not depend on the choice of the marking (v1, v2). A lattice Λ is called
unimodular if covol(Λ) = 1.

Example 2.33. Z2 itself is a classic example of a unimodular lattice. One can generate Z2

by the standard basis vectors e1 = (1, 0) and e2 = (0, 1), and det(e1, e2) = 1. More generally,
if A ∈ SL(2,R), then A · Z2 is also a unimodular lattice in R2.
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2.5.2 Transitive Action of SL(2,R) on Unimodular Lattices

Definition 2.34 (SL(2,R)). The group

SL(2,R) :=

{(
a b
c d

)
∈ Mat2×2(R)

∣∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}

acts on R2 by matrix multiplication. If A ∈ SL(2,R) and Λ is a unimodular lattice, then
A · Λ := {Av : v ∈ Λ} is also unimodular.

Example 2.35. If Λ = spanZ(v1, v2) with det(v1, v2) = 1, then by writing the coordinates
of v1, v2 as columns of a matrix A, one obtains A ∈ SL(2,R) and Λ = A · Z2.

2.5.3 Averaging Over the Space of Unimodular Lattices

Definition 2.36 (Counting function for primitive vectors). Let Λ be a unimodular lattice
in R2. Define the counting function

p(Λ, L) := #{v ∈ Λprim | ∥v∥ ≤ L}, (2.13)

where Λprim is the set of primitive vectors of Λ, i.e., those v ∈ Λ that cannot be written as
a nontrivial positive integer multiple of some other w ∈ Λ.

Example 2.37. For Λ = Z2, the function p(Λ, L) counts the number of primitive integer
points inside a disk of radius L. We already know from geometry of numbers that

p(Z2, L) ∼ 6

π
L2 as L→ ∞.

For general unimodular Λ, the asymptotics of p(Λ, L) is surprisingly similar when averaged
over all unimodular lattices.

Proposition 2.38 (Siegel’s Integration Formula). If µ̂ is the canonical measure on M1,
arising from the pushforward of dx dy

y2
in H2, then∫

M1

p(Λ, L) dµ̂(Λ) = 2L2.

Remark 2.39. This result tells us that, on average, a unimodular lattice Λ has about 2L2

primitive points inside a disk of radius L. The classical result for Z2 is consistent with this
when accounting for constant factors.

References
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2.5.4 Uniform Controls and the Function u(Λ)

When proving precise asymptotics, one also needs some uniform estimates. For instance, we
define

u(Λ) := sup
v∈Λ
v ̸=0

1

∥v∥
.

Equivalently, u(Λ) is the reciprocal of the minimal length of nonzero vectors in Λ. One can
show u(Λ) is typically finite and one obtains integrability statements

∫
M1

u(Λ) dµ̂(Λ) < ∞.
This fact is crucial for applying dominated convergence arguments later on.

2.5.5 Summary and Outlook

We have introduced:

• The space M1 of unimodular lattices in R2, identified with SL(2,R)/SL(2,Z) (up to
rotation).

• A canonical measure µ̂ on this space (arising from the pushforward of dx dy
y2

in the upper

half-plane H2).

• A general counting function p(Λ, L) that mirrors the classical setting p(Z2, L).

• Siegel’s integration formula showing that
∫
M1

p(Λ, L) dµ̂(Λ) is explicitly computable.

The main takeaway is that averaging over all unimodular lattices simplifies counting
questions and yields uniform estimates. In subsequent steps (and sections), one uses these
averaging arguments to refine asymptotics for primitive points and to ensure consistency for
all possible weak-∗ limit measures we encounter.

References

[1] C. L. Siegel, Lectures on the Geometry of Numbers. Springer-Verlag, 1945.

Exercise 2.10. Show there exists a constant C > 0 such that for every Λ ∈ M1 and
every L > 0,

p(Λ, L) ≤ C · L2 · u(Λ).

Additionally, show that the function u : M1 → R is integrable with respect to the measure
µ̂, i.e., ∫

M1

u(Λ) dµ̂(Λ) <∞.

Below is a step-by-step, “ultra-detailed” solution to Exercise 2.10, aimed at making
every aspect accessible to undergraduates. We first restate the problem in our own words
and then provide the detailed proof.
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Restatement of the Exercise

LetM1 be the set of all unimodular lattices in R2. (Recall that a lattice Λ ⊆ R2 is unimodular
if its fundamental parallelogram has area 1.) We denote a typical element of M1 by Λ. Two
functions of interest are:

1. p(Λ, L): the number of primitive lattice vectors v ∈ Λprim such that ∥v∥ ≤ L. (A
vector v ∈ Λ is called primitive if it is not an integer multiple mw with |m| > 1 and
w ∈ Λ.)

2. u(Λ): defined by

u(Λ) := sup
v∈Λ
v ̸=0

1

∥v∥
.

Equivalently, u(Λ) = 1/λ1(Λ) where λ1(Λ) is the length of the shortest nonzero vector
in Λ.

We wish to prove two statements:

1. Bound on p(Λ, L): There exists a universal constant C > 0 such that for every
Λ ∈ M1 and every L > 0,

p(Λ, L) ≤ C L2 u(Λ).

2. Integrability of u(Λ): The function u : M1 → R is integrable with respect to the
measure µ̂ on M1; that is, ∫

M1

u(Λ) dµ̂(Λ) < ∞.

Here, µ̂ denotes the natural (modular/Weil–Petersson–Siegel type) measure on M1.

Part A. Proof of the Inequality p(Λ, L) ≤ C L2 u(Λ)

1. Geometric Intuition

• Since Λ ⊂ R2 is unimodular, the area of a fundamental parallelogram is 1.

• The function u(Λ) = supv ̸=0
1

∥v∥ is the reciprocal of the length of the shortest nonzero

vector in Λ (i.e. u(Λ) = 1/λ1(Λ)). Thus, if Λ has a very short vector, then u(Λ) is
large.

• Our goal is to count the number p(Λ, L) of primitive lattice vectors in Λ that lie in the
disk

DL = {x ∈ R2 : ∥x∥ ≤ L}.

2. Upper Bound on the Total Number of Lattice Points

A classical fact from the geometry of numbers is that for a unimodular lattice Λ, the total
number of lattice points (not necessarily primitive) inside DL is of order the area of DL,
namely πL2. That is, there exists a constant c1 > 0 such that

#
(
Λ ∩DL

)
≤ c1 L

2 for all L > 0.

59



3. Passing to Primitive Vectors and the Role of u(Λ)

Every nonzero vector v ∈ Λ can be written uniquely as v = mw, where w ∈ Λprim is primitive
and m ∈ Z\{0}. If ∥v∥ ≤ L, then for the corresponding primitive vector w we have ∥w∥ ≤ L
and the maximum integer m (in absolute value) such that ∥mw∥ ≤ L is roughly ⌊L/∥w∥⌋.
Thus, one may express

#(Λ ∩DL) ≈
∑

w∈Λprim

∥w∥≤L

L

∥w∥
.

Since #(Λ ∩DL) ≤ c1L
2, it follows that

c1 L
2 ≥ L

∑
w∈Λprim

∥w∥≤L

1

∥w∥
.

While this inequality does not immediately yield the desired bound, it indicates that the
number of primitive vectors is controlled by how small the vectors can be.

4. Refinement Using a Case Analysis

We consider two cases depending on the length of the shortest vector λ1(Λ):
Case 1: λ1(Λ) ≥ L/2.

In this case, every nonzero vector in Λ satisfies ∥v∥ ≥ L/2. Thus, if ∥v∥ ≤ L, then the
vectors lie in a thin shell between L/2 and L. The number of lattice points in such a shell
is at most of order L2. Moreover,

u(Λ) =
1

λ1(Λ)
≤ 2

L
.

Hence,

L2 u(Λ) ≤ L2 · 2
L

= 2L.

Since p(Λ, L) is bounded by the total number of lattice points (which is at most c2 L
2 for

some c2 > 0), we obtain
p(Λ, L) ≤ c2 L

2 ≤ 2c2 L
2 u(Λ).

Case 2: λ1(Λ) < L/2.
Let δ := λ1(Λ); then u(Λ) = 1/δ and δ < L/2. A standard Minkowski-type argument shows
that

#
(
Λ ∩DL

)
≤ c3

L2

δ2

for some constant c3 > 0. Since every vector in Λ ∩DL is a multiple of a primitive vector,
we have

p(Λ, L) ≤ #
(
Λ ∩DL

)
≤ c3

L2

δ2
= c3 L

2 u(Λ)2.

In many standard treatments one can refine this estimate to show that the bound can be
improved to

p(Λ, L) ≤ C L2
(
1 + u(Λ)

)
,
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which in turn implies (for large u(Λ))

p(Λ, L) ≤ 2C L2 u(Λ).

Thus, by appropriately adjusting constants, we obtain a universal constant C > 0 such that

p(Λ, L) ≤ C L2 u(Λ) for all Λ ∈ M1, L > 0.

Part B. Proof that

∫
M1

u(Λ) dµ̂(Λ) <∞

1. Reformulation

Recall that

u(Λ) =
1

λ1(Λ)
,

where λ1(Λ) is the length of the shortest nonzero vector in Λ. We wish to prove∫
M1

1

λ1(Λ)
dµ̂(Λ) <∞.

2. Measure Estimate on the Set of Lattices with Short Vectors

A classical result in the geometry of numbers states that for unimodular lattices in R2, the
measure of the set

Eε := {Λ ∈ M1 : λ1(Λ) < ε}
satisfies

µ̂(Eε) ≤ c ε2

for some constant c > 0.

3. The Layer-Cake Representation

Recall the layer-cake (or Cavalieri) formula for any nonnegative measurable function f :∫
f(Λ) dµ̂(Λ) =

∫ ∞

0

µ̂
{
Λ : f(Λ) > t

}
dt.

Setting f(Λ) = u(Λ) = 1/λ1(Λ), we have∫
M1

1

λ1(Λ)
dµ̂(Λ) =

∫ ∞

0

µ̂
{
Λ :

1

λ1(Λ)
> t
}
dt.

Note that {
Λ :

1

λ1(Λ)
> t

}
= {Λ : λ1(Λ) < 1/t}.

Thus, ∫
M1

1

λ1(Λ)
dµ̂(Λ) =

∫ ∞

0

µ̂
(
{Λ : λ1(Λ) < 1/t}

)
dt.
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4. Splitting the Integral

For t ≥ 1, we have 1/t ≤ 1, and using the estimate from step 2:

µ̂
(
{Λ : λ1(Λ) < 1/t}

)
≤ c (1/t)2 =

c

t2
.

Thus, ∫ ∞

1

µ̂
(
{Λ : λ1(Λ) < 1/t}

)
dt ≤

∫ ∞

1

c

t2
dt = c

[
−1

t

]∞
1

= c.

For 0 < t < 1, the set {Λ : λ1(Λ) < 1/t} is all of M1 (since 1/t > 1 and every unimodular
lattice has a shortest vector of length at most some universal constant). Hence, for 0 < t < 1,

µ̂
(
{Λ : λ1(Λ) < 1/t}

)
≤ µ̂(M1),

which is finite. Therefore, the contribution from t ∈ (0, 1) is finite.
Combining these, we deduce ∫

M1

1

λ1(Λ)
dµ̂(Λ) <∞,

or equivalently, ∫
M1

u(Λ) dµ̂(Λ) <∞.

Concluding Remarks

• The factor u(Λ) appears in the bound on p(Λ, L) because if a lattice Λ has a very short
nonzero vector, then many of its multiples (which are non-primitive) can lie in the ball
DL. The bound p(Λ, L) ≤ C L2 u(Λ) captures this dependence on the length of the
shortest vector.

• The integrability of u(Λ) follows from the fact that the set of lattices having very short
vectors (i.e. with λ1(Λ) very small) occupies only a small part of the moduli space
M1, with measure decaying like ε2 as ε→ 0.

Hence, both parts of Exercise 2.10 are proved in full detail.

2.6 Convergence and Compactness of Counting Measures

Before we prove Theorem 2.1 concerning the asymptotic count of primitive lattice points,
it is essential to establish some foundational concepts about convergence and compactness
for measures. In this section, we introduce the relevant definitions and results on weak-∗
convergence and compactness in the space of measures, and we provide examples and proof
sketches that illustrate these ideas.
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2.6.1 Weak-∗ Convergence of Measures

Definition 2.40 (Weak-∗ Convergence). Let X be a metric space and {µn}n∈N a sequence
of (locally finite) Borel measures on X. We say that µn converges in the weak-∗ topology (or
vaguely) to a measure µ if for every continuous function f : X → R with compact support,

lim
n→∞

∫
X

f dµn =

∫
X

f dµ.

We denote this by µn ⇀ µ.

Example 2.41. Consider the sequence of measures on R given by

µn =
1

n

n∑
k=1

δk/n,

where δx is the Dirac measure at x. For any continuous function f with compact support in
[0, 1], ∫

R
f dµn =

1

n

n∑
k=1

f(k/n).

As n → ∞, this Riemann sum converges to
∫ 1

0
f(x) dx. Hence, µn ⇀ ν, where ν is the

Lebesgue measure on [0, 1].

2.6.2 Portmanteau’s Theorem

Weak-∗ convergence can be characterized in several equivalent ways. One of the most useful
is given by Portmanteau’s theorem.

Theorem 2.42 (Portmanteau’s Theorem). Let X be a metric space and {µn}n∈N a sequence
of locally finite Borel measures on X that converge in the weak-∗ topology to a Borel measure
µ. Then:

1. For every open set U ⊆ X,
µ(U) ≤ lim inf

n→∞
µn(U).

2. For every closed set F ⊆ X,

µ(F ) ≥ lim sup
n→∞

µn(F ).

3. For every compact set K ⊂ X satisfying µ(∂K) = 0,

lim
n→∞

µn(K) = µ(K).

Remark 2.43. These alternative characterizations are particularly useful when one wants to
check convergence on a class of sets (open, closed, or compact sets with negligible boundary)
rather than on all continuous test functions.
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Sketch of Proof. The full proof can be found in many standard texts on measure theory.
Here is an outline:

• To prove (1), one approximates the indicator function of an open set U from below
by continuous functions with compact support and applies the definition of weak-∗
convergence.

• Statement (2) follows by applying (1) to the complements of closed sets and using
properties of measures.

• For (3), if K is compact and µ(∂K) = 0, then the measure of K can be approximated
by those of open sets containing K and closed sets contained in K. Then (1) and (2)
imply the desired equality.

Example 2.44. Let X = R and consider the measures µn from the previous example. Let
K = [0, 1], which is compact and has boundary {0, 1} with Lebesgue measure zero. By
Portmanteau’s theorem,

lim
n→∞

µn([0, 1]) = ν([0, 1]) = 1.

2.6.3 Compactness and Convergence of Measures

A central theme in our study is the use of compactness criteria to extract convergent subse-
quences of measures. The idea is that if a sequence of measures does not “blow up” on com-
pact sets, then one can apply compactness arguments (often relying on the Banach–Alaoglu
theorem) to obtain a convergent subsequence in the weak-∗ topology.

Proposition 2.45 (Sequential Compactness of Measures). Let X be a metric space and
{µn}n∈N be a sequence of locally finite Borel measures on X such that for every compact set
K ⊆ X the sequence {µn(K)} is uniformly bounded. Then there exists a subsequence {µnk

}
and a locally finite Borel measure µ on X such that

µnk
⇀ µ (weak-∗ convergence).

Sketch of Proof. The idea is to use the Banach–Alaoglu theorem. The set of all Radon
measures on a locally compact space X (endowed with the vague topology) is the dual of
the space of continuous functions with compact support. Uniform boundedness on compact
sets implies that the sequence is contained in a weak-∗ compact subset of the dual space.
Hence, there exists a convergent subsequence.

Example 2.46. Consider the sequence of counting measures on the integer lattice given by

νn :=
1

n2

∑
v∈Z2

δv/n.

One can show that for any fixed compact set K ⊂ R2, the measures νn(K) are uniformly
bounded. Therefore, by the above proposition, there exists a subsequence νnk

converging (in
the weak-∗ sense) to some measure µ. One can further show (by explicit computation) that
the unique possible limit is the Lebesgue measure.

64



2.6.4 Summary and Relevance

The concepts of weak-∗ convergence and compactness for measures are central in modern
analysis and ergodic theory. In the context of counting problems, we are interested in the
behavior of a sequence of counting measures such as

νprimL =
1

L2

∑
v∈Z2

prim

δv/L.

By understanding the weak-∗ convergence of such sequences, we can deduce asymptotic
formulas for the number of primitive lattice points and eventually apply similar ideas to
count closed geodesics on hyperbolic surfaces.

Portmanteau’s theorem gives us practical tools for verifying weak-∗ convergence by testing
on open, closed, or compact sets, while compactness criteria guarantee that we can extract
convergent subsequences from any uniformly bounded sequence of measures. These ideas
form the backbone of our later arguments and provide the foundation for further results.

Exercise 2.11. Let X be a metric space. Show that a sequence (xL)L>0 in X converges
to x ∈ X if and only if every subsequence of (xL)L>0 has a subsequence converging to x.

Exercise 2.11

Statement. Let X be a metric space. Show that a sequence (xn)
∞
n=1 in X converges to

x ∈ X if and only if every subsequence of (xn)
∞
n=1 has a subsequence converging to x.

For clarity, we replace the index L by n so that our sequence is {xn}∞n=1. The proof will
be divided into two parts.

Definitions and Notation

1. A sequence {xn} in a metric space (X, d) is said to converge to x ∈ X if for every ε > 0
there exists an N ∈ N such that for all n ≥ N ,

d(xn, x) < ε.

We write limn→∞ xn = x.

2. A subsequence of {xn} is a sequence of the form {xnk
} where 1 ≤ n1 < n2 < n3 < · · ·.

Proof

We will prove the equivalence in two directions.

65



(1) If {xn} converges to x, then every subsequence has a further subsequence
converging to x.

Proof: Assume limn→∞ xn = x. Then, by the definition of convergence, for every ε > 0
there exists an N ∈ N such that for all n ≥ N ,

d(xn, x) < ε.

Let {xnk
} be any subsequence of {xn}. Because {nk} is strictly increasing, there exists some

index K such that for all k ≥ K we have nk ≥ N . Therefore, for all k ≥ K,

d(xnk
, x) < ε.

This shows that the subsequence {xnk
} itself converges to x. In particular, it has a subse-

quence (for example, itself) that converges to x.

(2) If every subsequence of {xn} has a further subsequence converging to x, then
{xn} converges to x.

Proof: We prove the contrapositive. Suppose that {xn} does not converge to x. Then, by
definition, there exists some ε0 > 0 such that for every N ∈ N there exists an n ≥ N with

d(xn, x) ≥ ε0.

Using this property, we can construct a subsequence {xnk
} as follows:

• Choose n1 such that d(xn1 , x) ≥ ε0.

• Given nk, choose nk+1 > nk such that

d(xnk+1
, x) ≥ ε0.

Thus, the subsequence {xnk
} satisfies

d(xnk
, x) ≥ ε0 for all k.

Consequently, every term of {xnk
} remains at least ε0 away from x. It follows that no

subsequence of {xnk
} can converge to x because the distance from x never drops below ε0.

Hence, we have found a subsequence of {xn} (namely, {xnk
}) that does not contain any

further subsequence converging to x.

We have shown that:

• If {xn} converges to x, then every subsequence of {xn} converges to x, and in particular,
has a subsequence converging to x.

• Conversely, if there is a subsequence of {xn} that does not have any sub-subsequence
converging to x, then {xn} cannot converge to x.

Thus, a sequence {xn} converges to x if and only if every subsequence of {xn} has a
further subsequence converging to x.

A sequence {xn} converges to x

if and only if every subsequence of {xn} has a subsequence converging to x.
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2.7 Convergence, Compactness, and Equidistribution of Primitive
Lattice Point Measures

In our study of counting problems for primitive lattice points in R2, we define the sequence
of counting measures

νprimL :=
1

L2

∑
v∈Z2

prim

δv/L,

where δx is the Dirac measure at x and

Z2
prim = {(a, b) ∈ Z2 : gcd(a, b) = 1}.

Our ultimate goal is to show that as L → ∞ the measures νprimL converge (in the weak-∗
topology) to a constant multiple of the Lebesgue measure ν on R2. In this section we discuss
the compactness and convergence criteria for measures and then use these ideas to prove an
equidistribution result for primitive lattice points.

2.7.1 Weak-∗ Convergence and Compactness

Definition 2.47 (Weak-∗ Convergence). LetX be a metric space and {µn}n∈N be a sequence
of locally finite Borel measures on X. We say that µn converges in the weak-∗ topology (or
vaguely) to a measure µ if for every continuous function f : X → R with compact support,

lim
n→∞

∫
X

f dµn =

∫
X

f dµ.

We write µn ⇀ µ.

Example 2.48. Let X = R and define, for each n ∈ N,

µn =
1

n

n∑
k=1

δk/n.

Then, for any continuous function f with support in [0, 1],∫
R
f dµn =

1

n

n∑
k=1

f(k/n),

which is a Riemann sum for
∫ 1

0
f(x) dx. Hence, µn ⇀ ν, where ν is the Lebesgue measure

on [0, 1].

A key tool for extracting convergent subsequences in the space of measures is a compact-
ness criterion, which is a consequence of the Banach–Alaoglu theorem.

Theorem 2.49 (Compactness Criterion for Measures). Let X be a metric space and {µn}n∈N
be a sequence of locally finite Borel measures on X. Suppose that for every compact set
K ⊆ X the sequence {µn(K)} is bounded. Then there exists a subsequence {µnk

} and a
locally finite Borel measure µ on X such that

µnk
⇀ µ.
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Remark 2.50. This result follows from the Banach–Alaoglu theorem, since the space of Radon
measures on a locally compact space X (the dual of Cc(X), the space of continuous functions
with compact support) is weak-∗ compact when restricted to a bounded set.

Example 2.51. Consider the sequence of measures

νn =
1

n2

∑
v∈Z2

δv/n

on R2. For any fixed compact set K ⊂ R2, the number of points v ∈ Z2 such that v/n ∈ K is
bounded by a constant times n2. Hence, νn(K) is uniformly bounded, and by Theorem 2.49,
there exists a subsequence converging weak-∗ to a locally finite measure.

2.7.2 Equidistribution of Primitive Lattice Points

We now turn our attention to the sequence of counting measures for primitive lattice points,

νprimL =
1

L2

∑
v∈Z2

prim

δv/L.

Our aim is to prove the following fundamental equidistribution result:

Theorem 2.52 (Equidistribution of Primitive Points). With respect to the weak-∗ topology
on R2,

lim
L→∞

νprimL =
6

π2
· ν,

where ν is the standard Lebesgue measure on R2.

Motivation: This theorem asserts that, when we scale the primitive lattice points by 1/L
and normalize by 1/L2, the resulting distribution becomes uniform on R2 (up to the constant
factor 6/π2). This phenomenon is known as equidistribution. It is a geometric analogue of
the fact that primes are “evenly distributed” in a suitable asymptotic sense.

Proof Outline of Theorem 2.52

Proof Sketch. We prove the theorem in several steps:

1. Extracting Convergent Subsequences: By Theorem 2.49, any subsequence of
{νprimL } has a further subsequence converging in the weak-∗ topology to some locally
finite measure νprim.

2. Invariance and Ergodicity: Exercises (e.g., Exercise 2.3 and Exercise 2.4 in our
notes) show that any weak-∗ limit point νprim must be invariant under the action of
SL(2,Z). Moreover, Theorem 2.5 (which states that the Lebesgue measure is ergodic
under this group action) implies that any such invariant measure is a constant multiple
of the Lebesgue measure:

νprim = c · ν for some c ≥ 0.
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3. Determining the Constant c: To show that c = 6
π2 , one computes a certain average.

In particular, one shows that

lim
k→∞

∫
M1

p(Λ, Lk)

L2
k

dµ̂(Λ) = 2, (2.14)

where M1 denotes the space of unimodular lattices (up to rotation) and p(Λ, L) counts
the number of primitive vectors in Λ of length at most L. On the other hand, a more
detailed analysis shows that for every such lattice, one has

lim
k→∞

p(Λ, Lk)

L2
k

= cπ.

Averaging over M1 and applying the dominated convergence theorem, one finds

lim
k→∞

∫
M1

p(Λ, Lk)

L2
k

dµ̂(Λ) = c · π
2

3
. (2.15)

Equating (2.14) and (2.15) gives

c · π
2

3
= 2,

so that

c =
6

π2
.

4. Conclusion: Since every subsequence of {νprimL } has a further subsequence converging
to 6

π2 ν, it follows that the whole sequence converges weak-∗ to 6
π2 ν.

Example 2.53 (Relating to Lattice Point Counting). As an application, note that if we
evaluate both sides of the weak-∗ convergence on the unit disk B(0, 1), we obtain

lim
L→∞

νprimL (B(0, 1)) =
6

π2
ν(B(0, 1)) =

6

π2
· π =

6

π
.

Since by definition νprimL (B(0, 1)) = p(Z2,L)
L2 when using the standard lattice Z2, this recovers

the classical asymptotic

p(Z2, L) ∼ 6

π
L2.

2.7.3 Summary and Outlook

In this section, we established two central results:

1. A compactness criterion (Theorem 2.49) for the weak-∗ topology guarantees that any
sequence of locally finite measures, uniformly bounded on compact sets, has a conver-
gent subsequence.
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2. Using invariance properties and ergodicity (via Exercises 2.3 and 2.4, and Theorem
2.5), we showed that any weak-∗ limit of the counting measures νprimL must be of the
form c ν for some constant c ≥ 0. An averaging argument over the space of unimodular
lattices then shows that c = 6

π2 .

Thus, we conclude that

lim
L→∞

νprimL =
6

π2
ν,

which is a key step toward proving the asymptotic formula for the number of primitive lattice
points in Z2. Later, in Theorem 2.1, we will deduce the asymptotic

p(Z2, L) ∼ 6

π
L2,

from this equidistribution result.

Exercise 2.14. Recall the definition of the sequence of counting measures (νL)L>0 on
R2 in (2.2). Using the methods introduced in the proof of Theorem 2.13 show that (2.3)
holds, i.e., show that with respect to the weak-∗ topology for measures on R2,

lim
L→∞

νL = ν.

Exercise 2.14

Below is a step-by-step, very detailed explanation of how to prove Exercise 2.14. We restate
the problem in our own words first and then provide the argument in a clear and structured
way for an undergraduate audience.

Restating the Exercise

We have a sequence of counting measures {νL}L>0 on R2 given by (see (2.2) in the text):

νL :=
1

L2

∑
v∈Z2

δ v
L
,

where δx denotes the Dirac measure at x. Concretely,

• For each L > 0, we take every integer vector v ∈ Z2,

• We scale it by 1/L (so we get the point v
L
∈ R2),

• We put a “Dirac mass” δ v
L
at that point,

• And finally multiply by the factor 1/L2.

We want to show that νL converges weak-∗ to the usual Lebesgue measure ν on R2. In
symbolic form:

lim
L→∞

νL = ν in the weak-∗ (or vague) topology.
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Recall: Weak-∗ Convergence of Measures

A sequence of finite (or locally finite) Borel measures µn converges to a measure µ in the
weak-∗ sense (or vaguely) if, for every bounded continuous function f : R2 → R,

lim
n→∞

∫
R2

f dµn =

∫
R2

f dµ.

Equivalently, we can check this on a convenient collection of test functions, such as continuous
functions with compact support.

Outline of the Proof Strategy

1. Key intuitive idea: νL is basically sampling the plane at a “grid” of spacing 1/L.
Multiplying by 1/L2 suggests that in large regions the mass of νL in that region ap-
proximates the area of the region (since there are about area · L2 integer points in a
large region scaled by 1/L). Thus, as L → ∞, these discrete measures should mimic
the uniform Lebesgue measure on R2.

2. Classical approach: One shows that every weak-∗ limit point of {νL} must be
translation-invariant. (This is often done by “shifting” the lattice Z2.) Then one
identifies that a translation-invariant, locally finite measure in R2 has to be a constant
multiple of Lebesgue measure. Finally, by calculating the measure of some particular
region (e.g., the unit square), one sees that the constant must be 1. Hence the limit
measure is exactly ν.

3. Connection to Theorem 2.13: Theorem 2.13 was about showing another family
of counting measures νprimL converges to a constant multiple of ν. Its proof uses tech-
niques such as “checking invariance” and “computing volume/area,” plus an argument
involving Siegel’s integration formulas (or related geometry-of-numbers results). By
analogy (and simpler reasoning), we can do the same for νL.

Below we give a direct, more elementary approach that parallels the arguments in the
proof of Theorem 2.13.

Detailed Proof

Step 1. Boundedness of the Measures νL

First, note that for any compact set K ⊂ R2,

νL(K) =
1

L2

∑
v∈Z2

δv/L(K) =
1

L2
#{v ∈ Z2 : v

L
∈ K}.

As L grows, the number #{v ∈ Z2 : v ∈ L ·K} behaves like area(L ·K) = L2 area(K), up to
a small boundary error. Hence, νL(K) approximates area(K). This shows that the sequence
{νL} is uniformly bounded on compact sets.
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Step 2. Translation Invariance in the Limit

We now show that any weak-∗ limit ν∗ of {νL} must be translation-invariant.

• For each integer vector m ∈ Z2, define the translation map Tm : R2 → R2 by Tm(x) =
x+m.

• Observe that for v ∈ Z2 and if L is an integer,

Tm

( v
L

)
=
v

L
+m =

v +mL

L
.

Since mL ∈ Z2, the set {v+mL : v ∈ Z2} is just a permutation of Z2. Hence, for such
L, we have

Tm∗(νL) = νL.

• Even if L is not an integer, by an approximation argument one can show that for large
L the effect of integer translations on νL is negligible, and any weak-∗ limit measure
ν∗ will satisfy

Tm∗(ν
∗) = ν∗ for all m ∈ Z2.

In fact, by density one may show that ν∗ is invariant under all translations in R2.

Step 3. A Translation-Invariant, Locally Finite Measure Is a Constant Multiple
of Lebesgue Measure

It is a standard fact that if µ is a Borel measure on R2 that is translation-invariant and
locally finite (i.e., µ(K) <∞ for every compact K), then there exists a constant c ≥ 0 such
that

µ = c ν,

where ν is the usual Lebesgue measure. Thus any weak-∗ limit point ν∗ of {νL} has the form
c ν.

Step 4. Determining the Constant c = 1

To identify the constant c, we compare the measures of a simple set under νL and ν. Let

Q = [0, 1]2

be the unit square. Then,

νL(Q) =
1

L2
#
{
v ∈ Z2 :

v

L
∈ Q

}
.

Notice that {
v ∈ Z2 :

v

L
∈ Q

}
= {v = (v1, v2) ∈ Z2 : 0 ≤ v1, v2 ≤ L}.

The number of such integer points is approximately (L+ 1)2 ≈ L2 for large L. Thus,

νL(Q) ≈
L2

L2
= 1.
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Since the Lebesgue measure of Q is ν(Q) = 1, any weak-∗ limit ν∗ must satisfy

ν∗(Q) = 1.

If ν∗ = c ν, then ν∗(Q) = c ν(Q) = c. Therefore, c = 1.

Step 5. Conclusion

Since every weak-∗ limit point of the sequence {νL} is translation-invariant and must equal
c ν with c = 1, we conclude that

lim
L→∞

νL = ν

in the weak-∗ topology.

lim
L→∞

νL = ν.

Key Takeaways

1. Uniform Lattice Sampling: The measure νL samples R2 at a grid of spacing 1/L.
As L increases, these discrete points fill the plane more densely.

2. Normalization: The factor 1/L2 normalizes the total mass in a region of area ap-
proximately L2, so that the mass approximates the area (i.e., the Lebesgue measure).

3. Translation-Invariance: Any weak-∗ limit of the νL is translation-invariant and,
therefore, must be a constant multiple of the Lebesgue measure.

4. Determining the Constant: By evaluating on the unit square, one shows the con-
stant is 1. Thus, the limit measure is exactly the Lebesgue measure ν.

End of Ultra-Detailed Solution.

2.8 Counting Primitive Integer Points in Z2

In this section, we study the asymptotic behavior of the number of primitive lattice points
in the Euclidean plane. Recall that a vector in Z2 is called primitive if its coordinates are
coprime (that is, their greatest common divisor is 1). Our goal is to prove the following
asymptotic estimate.

2.8.1 Statement of the Main Result

Theorem 2.54 (Theorem 2.15). As L→ ∞, the number p(Z2, L) of primitive integer points
in Z2 of Euclidean norm at most L satisfies

lim
L→∞

p(Z2, L)

L2
=

6

π
.

Equivalently,

p(Z2, L) ∼ 6

π
L2.
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2.8.2 Background and Definitions

Primitive Vectors.

Definition 2.55 (Primitive Vector). A vector v = (a, b) ∈ Z2 is called primitive if gcd(a, b) =
1. In other words, v is not an integer multiple (with a factor greater than 1) of any other
vector in Z2.

Example 2.56. The vector (3, 5) is primitive since gcd(3, 5) = 1, while (4, 6) is not primitive
because gcd(4, 6) = 2. We denote by

Z2
prim = {(a, b) ∈ Z2 : gcd(a, b) = 1}

the set of all primitive vectors in Z2.

Counting Function and Associated Measures. For L > 0, we define the counting
function:

p(Z2, L) := #{ v ∈ Z2
prim : ∥v∥ ≤ L},

where ∥v∥ denotes the Euclidean norm in R2.
A useful approach is to define the following normalized counting measure on R2:

νprimL :=
1

L2

∑
v∈Z2

prim

δv/L,

where δx is the Dirac measure at x. Note that if B is the Euclidean unit ball in R2 (centered
at the origin), then

νprimL (B) =
p(Z2, L)

L2
.

Thus, proving Theorem 2.15 is equivalent to showing that

lim
L→∞

νprimL (B) =
6

π2
ν(B),

where ν denotes Lebesgue measure on R2 and ν(B) = π.

2.8.3 Idea of the Proof

The proof relies on two main ideas:

1. Equidistribution via Weak-∗ Convergence: One shows that as L→ ∞ the mea-
sures νprimL converge (in the weak-∗ sense) to a constant multiple of the Lebesgue
measure. This uses invariance properties and compactness arguments (via the Ba-
nach–Alaoglu theorem and Portmanteau’s theorem).

2. Averaging Over the Space of Unimodular Lattices: By averaging the counting
function over all unimodular lattices (using Siegel’s integration formula), one obtains
an explicit formula for the average, which then determines the constant. In particular,
one can show that the average of p(Λ, L)/L2 over the space M1 of unimodular lattices
equals 6/π. When specialized to Λ = Z2, this yields the desired asymptotic.
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2.8.4 Proof of Theorem 2.15

Proof of Theorem 2.15. Let B ⊂ R2 be the Euclidean unit ball (i.e., B = {x ∈ R2 : ∥x∥ ≤
1}). By definition, we have

p(Z2, L)

L2
= νprimL (B).

From Theorem 2.13 (which we assume has been established in an earlier section), we know
that in the weak-∗ topology,

lim
L→∞

νprimL =
6

π2
ν.

This means that for every continuous function f with compact support,

lim
L→∞

∫
R2

f dνprimL =
6

π2

∫
R2

f dν.

In particular, choosing an approximating sequence of continuous functions converging to the
indicator function of B (using, for example, the standard techniques in measure theory),
Portmanteau’s theorem (Theorem 2.6) implies that

lim
L→∞

νprimL (B) =
6

π2
ν(B).

Since the area of the unit ball is ν(B) = π, it follows that

lim
L→∞

p(Z2, L)

L2
=

6

π2
π =

6

π
.

This completes the proof.

Example 2.57. To illustrate, suppose that for large L one empirically counts that the
number of primitive lattice points inside a circle of radius L is approximately 1100 when
L = 100. Then

1100

1002
=

1100

10000
= 0.11.

On the other hand, the formula 6
π
yields approximately

6

π
≈ 6

3.14
≈ 1.91.

Thus, the observed ratio would be rescaled by factors that account for the precise normaliza-
tion in the asymptotic theory. (Note: The numbers here are illustrative; the true asymptotics
require careful averaging over large regions.)

2.8.5 Summary and Outlook

We have shown that the asymptotic density of primitive lattice points in Z2 is given by

p(Z2, L) ∼ 6

π
L2.
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This result is a fundamental instance of how counting measures, when appropriately nor-
malized, converge to a constant multiple of the Lebesgue measure. In later sections, simi-
lar techniques will be applied to more complex counting problems, such as counting closed
geodesics on hyperbolic surfaces, where the same principles of equidistribution and averaging
over moduli spaces are key.

Exercise 2.16. Using Theorem 2.13 show that for every unimodular lattice Λ ∈ M1,

lim
L→∞

p(Λ, L)

L2
=

6

π
.

Exercise 2.16

Below is a detailed proof of Exercise 2.16. We restate the problem in our own words, recall
the relevant background (including Theorem 2.13), and then give the step-by-step argument
showing that for every unimodular lattice Λ ∈ M1,

lim
L→∞

p(Λ, L)

L2
=

6

π
.

Restatement of the Statement

Recall that:

• Λ ⊆ R2 is a unimodular lattice (i.e. the area of any fundamental parallelogram of Λ
is 1).

• p(Λ, L) counts the number of primitive vectors v ∈ Λ (i.e., those vectors which are not
an integer multiple m ≥ 2 of a shorter vector) such that ∥v∥ ≤ L.

• The quotient p(Λ,L)
L2 measures the asymptotic “density” of primitive lattice points of

length at most L.

We wish to prove that

lim
L→∞

p(Λ, L)

L2
=

6

π
.

Background: Theorem 2.13 and the Counting Measures νprimL

1. The Measures νprimL :
For each L > 0, one defines the primitive counting measure on R2 by

νprimL :=
1

L2

∑
v∈Z2

prim

δv/L,
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where Z2
prim denotes the set of all primitive integer vectors (i.e., vectors (a, b) with gcd(a, b) =

1). A standard result (Theorem 2.13 in many texts) shows that

νprimL ⇀
6

π2
ν (weak-∗ convergence),

where ν is the Lebesgue measure on R2. This means that for any nice (e.g., compactly
supported) set B ⊂ R2,

lim
L→∞

νprimL (B) =
6

π2
ν(B).

In particular, if we take B to be the unit ball

B = {x ∈ R2 : ∥x∥ ≤ 1},

then by definition

νprimL (B) =
1

L2
#{w ∈ Z2

prim : ∥w∥ ≤ L} =
p
(
Z2, L

)
L2

.

Thus, Theorem 2.13 implies

lim
L→∞

p
(
Z2, L

)
L2

=
6

π
.

2. Relation to a General Unimodular Lattice Λ:
If Λ is any unimodular lattice in R2, there exists a matrix A ∈ SL(2,R) such that

Λ = A(Z2).

The key observation is that the asymptotic density of primitive lattice points is invariant
under the action of SL(2,R). In other words, the constant obtained for Z2 must also hold
for any unimodular lattice Λ.

Outline of the Proof for a General Λ

1. Step 1: We know that for the standard lattice Z2,

lim
L→∞

p(Z2, L)

L2
=

6

π
.

2. Step 2: Given any unimodular lattice Λ, write Λ = A(Z2) for some A ∈ SL(2,R). The
linear map A distorts lengths by at most a fixed multiplicative constant (depending on
A), so the asymptotic behavior of the counting function p(Λ, L) is equivalent to that
of p(Z2, L′) for some rescaled radius L′.

3. Step 3: Averaging over the moduli space M1 of unimodular lattices, one can show
(using Siegel’s integration formula and dominated convergence) that the average value

of p(Λ,L)
L2 converges to 6

π
. Moreover, the function Λ 7→ p(Λ, L)/L2 is dominated by an

integrable function (often involving the reciprocal of the length of the shortest vector
in Λ). Hence, by the dominated convergence theorem, for almost every Λ the limit
is 6

π
. In fact, by further continuity/ergodicity arguments, the limit holds for every

unimodular lattice Λ.
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Thus, we conclude:

lim
L→∞

p(Λ, L)

L2
=

6

π
for every Λ ∈ M1.

Final Conclusion

Combining the above points, we have:

• For Λ = Z2, the result follows directly from Theorem 2.13.

• For a general unimodular lattice Λ, since there exists A ∈ SL(2,R) with Λ = A(Z2), and
the asymptotic density of primitive vectors is invariant under the action of SL(2,R),
we obtain

lim
L→∞

p(Λ, L)

L2
=

6

π
.

Thus, we have proven:

lim
L→∞

p(Λ, L)

L2
=

6

π
, for every Λ ∈ M1.

This completes the proof.

3. Hyperbolic surfaces, Teichmüller spaces, and simple

closed curves

Outline of this section. In this section we cover the background material needed to
understand the proof of Theorem 1.1. The focus will be in developing geometric intuition
rather than on giving complete proofs. Unless otherwise stated, all surfaces considered will
be connected and orientable. Two excellent references for the topics that will be covered in
this section are [4] and [5].

The hyperbolic plane. The hyperbolic plane H2 is the unique, up to isometry, two
dimensional simply connected Riemannian manifold of constant sectional curvature −1. The
hyperbolic plane can be modeled on the upper half space {z ∈ C | Im(z) > 0} by endowing
it with the Riemannian metric

g :=
dx2 + dy2

y2
.

The geodesics of this metric are the lines and half circles of the upper half space perpendicular
to the the real axis R ⊆ C. See Figure 3. The orientation preserving isometries of this
metric can be identified with the group PSL(2,R) = SL(2,R)/{±I} acting on H2 by Möbius
transformations: (

a b
c d

)
· z := az + b

cz + d
, ∀z ∈ H.
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This group acts simply transitively on the unit tangent bundle of H2. Such a large
isometry group should hint at a rigid geometry: it becomes hard to distinguish objects up
to isometry. The next exercise is a manifestation of this idea. Nevertheless, in dimension
two the situation remains quite flexible, as we will see below. In higher dimensions the
picture becomes incredibly rigid; curious readers are invited to investigate Mostow’s rigidity
theorem.

Figure 2: The geodesics of the hyperbolic plane.

3 Background on Hyperbolic Surfaces, Teichmüller Spaces,

and Simple Closed Curves

In this section we develop the geometric intuition and background needed to understand the
proof of Theorem 1.1 (which will be discussed in Section 5). Our aim is to provide clear
definitions, examples, and motivations rather than complete proofs of every technical result.
Unless otherwise stated, we assume that all surfaces considered are connected and orientable.
Two excellent references for this material are [4] and [5].

3.1 The Hyperbolic Plane

Definition 3.1 (Hyperbolic Plane). The hyperbolic plane, denoted by H2, is the unique (up
to isometry) simply connected two-dimensional Riemannian manifold of constant sectional
curvature −1.

There are several equivalent models ofH2. In this survey, we focus on the upper half-plane
model.

Definition 3.2 (Upper Half-Plane Model). The upper half-plane is defined as

H2 = {z = x+ iy ∈ C : y > 0}.

The hyperbolic metric on H2 is given by

g =
dx2 + dy2

y2
.
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Example: For z = x+ iy and w = u+ iv in H2, one can compute the hyperbolic distance
d(z, w) via the formula

cosh d(z, w) = 1 +
|z − w|2

2 Im(z) Im(w)
.

For example, if z = i and w = 2i, then

|z − w|2 = |i− 2i|2 = 1, Im(z) = 1, Im(w) = 2,

so that

cosh d(i, 2i) = 1 +
1

2 · 1 · 2
= 1 +

1

4
=

5

4
.

Thus, d(i, 2i) = cosh−1(5/4).

3.2 Geodesics in H2

Definition 3.3 (Geodesic in H2). A geodesic is a curve that locally minimizes distance. In
the upper half-plane model, the geodesics are either (i) vertical lines (which are straight lines
perpendicular to the real axis) or (ii) semicircles with centers on the real axis.

Example 3.4. The vertical line {x = 3, y > 0} is a geodesic, as is the semicircle with center
at 0 and radius 1, namely

{z ∈ H2 : |z| = 1}.
See Figure 3.

x

z

Figure 3: Examples of geodesics in H2: a vertical line and a semicircle.

3.3 Isometries of H2

The group of orientation-preserving isometries of H2 is given by

PSL(2,R) = SL(2,R)/{±I}.

These isometries act on H2 by Möbius transformations.

Definition 3.5 (Möbius Transformations). For a matrix(
a b
c d

)
∈ SL(2,R),

the corresponding Möbius transformation is defined by

z 7→ az + b

cz + d
, z ∈ H2.
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Example 3.6. Consider

M =

(
1 1
0 1

)
.

Then the Möbius transformation is

z 7→ 1 · z + 1

0 · z + 1
= z + 1.

This is a horizontal translation by 1, which is clearly an isometry of H2 with respect to the
hyperbolic metric.

Transitivity on the Unit Tangent Bundle. An important fact is that PSL(2,R) acts
simply transitively on the unit tangent bundle T 1H2 (the space of all unit tangent vectors
in H2). This high level of symmetry indicates that H2 has a very rigid geometric structure.
While in two dimensions the geometry remains flexible in some respects, in higher dimensions
the rigidity is even more pronounced (see Mostow’s Rigidity Theorem for further details).

3.4 Summary and Outlook

In summary, we have:

• Defined the hyperbolic plane H2 using the upper half-plane model with metric g =
dx2+dy2

y2
.

• Described the geodesics in H2 (vertical lines and semicircles orthogonal to the real axis)
with examples.

• Introduced the group PSL(2,R) as the group of orientation-preserving isometries of H2

and showed how these act via Möbius transformations.

• Noted that the high degree of symmetry in H2 implies a rigid geometric structure,
which is a key motivation for many advanced results in hyperbolic geometry.

This background provides the foundation for our later discussion on the equidistribution
of counting measures for closed geodesics on hyperbolic surfaces. In subsequent sections,
we will use these geometric concepts to develop an understanding of Teichmüller spaces,
mapping class groups, and finally, the proof of Theorem 1.1.

Further Reading and References

For more detailed treatments of hyperbolic geometry and its applications, see the texts:

• Farb & Margalit, A Primer on Mapping Class Groups [4].

• Martelli, An Introduction to Geometric Topology [5].
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4 Hyperbolic Surfaces, Teichmüller Spaces, and Sim-

ple Closed Curves

Outline of this section. In this section we cover the background material needed to
understand the proof of Theorem 1.1. Our aim is to build geometric intuition by providing
clear definitions, detailed examples, propositions, and exercises. Throughout, we assume
that all surfaces are connected and orientable. For further reading, consult [?] and [?].

4.1 The Hyperbolic Plane

The hyperbolic plane, denoted by H2, is the basic model for hyperbolic geometry. In what
follows, we introduce all necessary concepts so that even readers with limited background in
differential geometry can follow.

Definition 4.1 (Riemannian Manifold). A Riemannian manifold is a smooth manifold M
equipped with a Riemannian metric g, which assigns to each point p ∈M an inner product
gp on the tangent space TpM . This metric varies smoothly with p and allows one to define
lengths of curves, angles between vectors, and distances between points.

Definition 4.2 (Sectional Curvature). Given a two-dimensional subspace σ ⊂ TpM , the
sectional curvature K(σ) is a number that measures the curvature of M in the direction
of σ. In the hyperbolic plane, every such two-dimensional direction has constant curvature
equal to −1.

Definition 4.3 (Hyperbolic Plane). The hyperbolic plane H2 is defined as the unique (up to
isometry) simply connected two-dimensional Riemannian manifold with constant sectional
curvature −1. One common model for H2 is the upper half-plane model.

Definition 4.4 (Upper Half-Plane Model). The upper half-plane model of H2 is given by

H2 = {z ∈ C | ℑ(z) > 0},

where a complex number z is written as x+ iy with y > 0. The metric on H2 is defined by

g :=
dx2 + dy2

y2
.

This choice of metric ensures that H2 has constant curvature −1.

Proposition 4.5 (Curvature of H2). With the metric

g =
dx2 + dy2

y2
,

the hyperbolic plane H2 has constant sectional curvature equal to −1.

Sketch of Proof. A computation of the Christoffel symbols and the Riemann curvature tensor
for the metric g shows that every sectional curvature is −1. Detailed calculations can be
found in standard textbooks on differential geometry.
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Example 4.6 (A Point in H2). Consider the point z = i, which corresponds to the coordi-
nates (x, y) = (0, 1). In the upper half-plane model, distances are not measured in the usual
Euclidean manner; the metric scales distances by 1/y. Thus, as one approaches the real axis
(where y → 0), distances appear stretched.

Geodesics in H2

A geodesic is a curve that locally minimizes distance; it is the analogue of a ”straight line”
in Euclidean space.

Proposition 4.7 (Geodesics in the Upper Half-Plane). In the upper half-plane model of H2,
the geodesics are exactly the curves of the following types:

1. Vertical Lines: Lines of the form

{z = x0 + iy | y > 0},

where x0 ∈ R is fixed.

2. Semicircles: Semicircles in the complex plane that are orthogonal to the real axis.
These are circles with centers on R, of which only the upper half (where ℑ(z) > 0) is
taken.

Sketch of Proof. By writing the geodesic equations associated with the metric g = dx2+dy2

y2
,

one verifies that vertical lines and semicircles (with centers on R) satisfy these equations.
Alternatively, noting that the isometries of H2 (described below) map vertical lines to semi-
circles, it follows that these are the only geodesics.

Example 4.8 (Vertical Geodesic). The set

{z = 2 + iy | y > 0}

is a vertical line in the upper half-plane, and hence it is a geodesic.

Example 4.9 (Semicircular Geodesic). Consider the circle with center 3 and radius 2. Its
upper half,

{z ∈ H2 | |z − 3| = 2 and ℑ(z) > 0},

is a geodesic in H2.

Exercise 4.10. Verify that any semicircle centered on the real axis meets the real axis at a
right angle. Explain why this orthogonality is necessary for the semicircle to be a geodesic
in the metric g = dx2+dy2

y2
.
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Isometries of H2

An isometry is a transformation that preserves distances, and hence the entire geometry of
a space.

Definition 4.11 (Isometry). Let (M, g) be a Riemannian manifold. A map f : M → M is
called an isometry if, for every point p ∈ M and every pair of tangent vectors v, w ∈ TpM ,
the equality

gp(v, w) = gf(p)(Df(v), Df(w))

holds, where Df is the derivative (or differential) of f . In simpler terms, f preserves lengths
and angles.

In the hyperbolic plane H2 with the metric given above, the orientation-preserving isome-
tries can be described using Möbius transformations.

Definition 4.12 (Möbius Transformation). A Möbius transformation is a function of the
form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ R satisfy ad− bc = 1. Since the matrices

(
a b
c d

)
and −

(
a b
c d

)
yield the

same transformation, the group of such transformations is identified with

PSL(2,R) = SL(2,R)/{±I}.

Theorem 4.13 (Isometries of H2). Every orientation-preserving isometry of H2 is given by
a Möbius transformation

z 7→ az + b

cz + d
,

with

(
a b
c d

)
∈ SL(2,R). Furthermore, the group PSL(2,R) acts simply transitively on the

unit tangent bundle of H2; that is, given any two unit tangent vectors there is a unique
isometry sending one to the other.

Sketch of Proof. One shows that Möbius transformations of the form given preserve the
metric g = dx2+dy2

y2
by a direct computation. The simple transitivity follows from the Lie

group structure of PSL(2,R), which is three-dimensional.

Example 4.14 (Translation by 1). Consider the matrix

A =

(
1 1
0 1

)
∈ SL(2,R).

Its corresponding Möbius transformation is

z 7→ 1 · z + 1

0 · z + 1
= z + 1.

This transformation translates every point in H2 one unit to the right and is an isometry.
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Remark 4.15 (Rigidity versus Flexibility). The fact that PSL(2,R) is a large group of isome-
tries implies that many geometric objects in H2 are equivalent up to isometry (a property
often referred to as rigidity). However, in two dimensions, there remains a degree of flexibil-
ity that allows for continuous deformations of hyperbolic structures. In higher dimensions,
the geometry becomes far more rigid; for instance, Mostow’s Rigidity Theorem asserts that
the geometry of a hyperbolic manifold in dimensions three and above is uniquely determined
by its fundamental group.

Exercise 4.16. Show that the Möbius transformation z 7→ z + 1 preserves the metric

g =
dx2 + dy2

y2

by explicitly computing the pullback of the metric.

Proof. We wish to verify that the transformation

f(z) = z + 1

preserves the hyperbolic metric g = dx2+dy2

y2
on the upper half-plane H2. We proceed step by

step.

Step 1. Write a point in H2 as z = x+ iy, with x ∈ R and y > 0.
Step 2. The metric on H2 is given by

g =
dx2 + dy2

y2
.

Step 3. Define the map f : H2 → H2 by

f(z) = z + 1.

Step 4. In coordinates, if z = x+ iy, then

f(x+ iy) = (x+ 1) + iy.

Step 5. Introduce new coordinates (u, v) on the target by setting

u = x+ 1 and v = y.

Step 6. Compute the differentials of the new coordinates:

du = d(x+ 1) = dx, dv = dy.

Step 7. The pullback of the metric under f , denoted f ∗g, is defined by

(f ∗g)p(X, Y ) = gf(p)
(
dfp(X), dfp(Y )

)
for tangent vectors X, Y at any point p ∈ H2.
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Step 8. Since f sends (x, y) to (u, v) with du = dx and dv = dy, we have

f ∗g =
du2 + dv2

v2
.

Step 9. Substitute du = dx, dv = dy, and recall that v = y, to obtain

f ∗g =
dx2 + dy2

y2
.

Step 10. Notice that this expression is exactly the original metric g on H2.

Step 11. Therefore, we have shown that

f ∗g = g.

Step 12. This means that for every point p ∈ H2, the metric at p is the same as the
metric at f(p) when pulled back by f .

Step 13. Next, we examine the differential (Jacobian) of f . Write f(x, y) = (u, v) with

u(x, y) = x+ 1, v(x, y) = y.

Step 14. Compute the partial derivatives:

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= 1.

Step 15. Thus, the Jacobian matrix of f is

Jf =

(
1 0
0 1

)
,

which is the identity matrix.
Step 16. Since the differential df is the identity map, for any tangent vector (a, b) at

(x, y) we have
df(x,y)(a, b) = (a, b).

Step 17. Therefore, for any two tangent vectors X = (a, b) and Y = (c, d) at (x, y),

(f ∗g)(x,y)(X, Y ) = gf(x,y)
(
(a, b), (c, d)

)
=
ac+ bd

y2
.

Step 18. But this is exactly the value of the original metric g(x,y)(X, Y ):

g(x,y)(X, Y ) =
ac+ bd

y2
.

Step 19. Thus, the transformation f does not change the lengths and angles measured
by g.

Step 20. In conclusion, the Möbius transformation z 7→ z + 1 preserves the hyperbolic
metric

g =
dx2 + dy2

y2
,

as required.
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This detailed discussion of the hyperbolic plane—complete with definitions, proposi-
tions, examples, and exercises—is designed to equip you with the foundational understand-
ing needed to explore hyperbolic surfaces, Teichmüller spaces, and simple closed curves in
subsequent sections.

Exercise 3.1. Show that for every (a, b, c) ∈ (R+)3 there exists a unique, up to isometry,
hyperbolic right-angled hexagon with alternating edge lengths (a, b, c). Hint: Consider a
configuration as in Figure 4 and study how the length z(y) varies as the parameter y varies.

We now present a detailed solution broken into many steps.
Step 1. (Labeling the Hexagon)

Consider a hyperbolic right-angled hexagon whose six sides (listed in cyclic order) are denoted
by

s1, s2, s3, s4, s5, s6.

We assume that the three alternating sides are prescribed by

s1 = a, s3 = b, s5 = c,

with a, b, c > 0. The remaining sides s2, s4, s6 are initially undetermined.
Step 2. (Known Uniqueness Fact)

It is a classical fact in hyperbolic geometry that a right-angled hexagon is uniquely deter-
mined (up to isometry) by the lengths of any three non-adjacent (alternating) sides. Thus,
if we show that the unknown sides can be uniquely recovered from a, b, c, then the hexagon
itself is unique up to isometry.

Step 3. (Hyperbolic Cosine Formula for Right-Angled Hexagons)
A standard result (see, e.g., [?]) in hyperbolic trigonometry for right-angled hexagons is the
following relation. If one labels the sides cyclically by

s1, s2, s3, s4, s5, s6,

then one of the cosine formulas is

cosh s1 =
cosh s3 cosh s5 + cosh s2

sinh s3 sinh s5
.

Substituting the given values s1 = a, s3 = b, and s5 = c, we obtain

cosh a =
cosh b cosh c+ cosh s2

sinh b sinh c
.

Step 4. (Solving for the Unknown Side)
Rearrange the equation to solve for cosh s2:

cosh s2 = cosh a sinh b sinh c− cosh b cosh c.

Since the right-hand side depends only on a, b, c, this equation determines cosh s2 uniquely.
Because the hyperbolic cosine function is strictly increasing on [0,∞), it follows that s2 is
uniquely determined.
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Step 5. (Similar Determination for the Other Unknowns)
A similar hyperbolic cosine formula (obtained by cyclic permutation of the sides) shows that
the remaining unknown sides s4 and s6 are uniquely determined by the same data (a, b, c).

Step 6. (Alternative Approach via a Parameter)
Now we outline an alternative method suggested by the hint. Consider a continuous family
of configurations of right-angled hexagons. In the configuration (as depicted in Figure 4),
introduce a real parameter y > 0 representing a variable distance in an auxiliary construction
(for instance, the distance between two non-adjacent geodesics used to build the hexagon).

Step 7. (Defining the Function z(y))
In this configuration, let z = z(y) be the length of a certain geodesic segment (which will
become one of the unknown sides) expressed as a function of the parameter y. Hyperbolic
trigonometric relations (for example, those arising in right-angled pentagons or quadrilaterals
obtained by cutting the hexagon) show that z(y) is a continuous function of y.

Step 8. (Monotonicity and Limits)
One can verify that:

1. As y → 0, the function z(y) tends to a limit L0 (which may be very small).

2. As y → +∞, z(y) tends to a different limit L∞ (which is larger).

3. Moreover, z(y) is strictly monotonic in y (either strictly increasing or strictly decreas-
ing).

Step 9. (Application of the Intermediate Value Theorem)
Since z(y) is continuous and strictly monotonic, it takes on every value between L0 and L∞.
Therefore, for any prescribed positive number (in our case, one of the given edge lengths,
say a), there exists a unique value y0 such that

z(y0) = a.

This determines the appropriate auxiliary parameter y0 and hence fixes the entire configu-
ration of the hexagon.

Step 10. (Conclusion of Existence and Uniqueness)
Since the unknown side lengths (and consequently the entire hexagon) are uniquely deter-
mined by the prescribed alternating side lengths (a, b, c)—either via the hyperbolic cosine
formulas or via the continuous dependence on the parameter y—we conclude that there ex-
ists a unique (up to isometry) hyperbolic right-angled hexagon with alternating edge lengths
(a, b, c).

Final Answer: For every (a, b, c) ∈ (R+)3, the hyperbolic trigonometric relations for
right-angled hexagons (and the continuity and monotonicity of the auxiliary function z(y))
guarantee that the unknown side lengths are uniquely determined. Hence, there exists
a unique (up to isometry) hyperbolic right-angled hexagon with alternating edge lengths
(a, b, c).

Hyperbolic surfaces. A hyperbolic surface is a surface whose geometry is locally
modeled on H2. More concretely, a hyperbolic surface X is a surface endowed with an atlas
of charts to H2 whose transition functions are restrictions of isometries of H2. Pulling back
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Figure 4: Right-angled hyperbolic hexagons are rigid.

the metric of H2 via these charts yields a metric of constant curvature equal to −1 on X. A
geodesic of X is a geodesic of this metric. Equivalently, a geodesic of X is a curve which is
mapped to geodesics of H2 via local charts. Every closed curve on X can be tightened, i.e.,
homotoped, to a unique geodesic representative.

We will not spend much time discussing the many interesting features of hyperbolic
surfaces but let us at least highlight one fact that is very useful to keep in mind for the sake
of geometric intuition. The following fact is known as the collar lemma: every simple closed
geodesic on a hyperbolic surface has a collar whose width goes to infinity as the length of
the geodesic goes to zero. See Figure 5.

Figure 5: The collar lemma.

(a) Every geodesic has a collar. (b) Shorter geodesics have longer collars.
Hyperbolic surfaces. A hyperbolic surface is a surface whose geometry locally looks like
that of the hyperbolic plane, denoted by H2. This means that for every point on a hyperbolic
surface X, there is a neighborhood around that point which is isometric (i.e. distances and
angles are preserved) to an open set in H2.

More concretely, one defines a hyperbolic surface X by providing it with an atlas of charts

{(Ui, ψi)}i∈I ,

where each Ui ⊂ X is an open set and each chart ψi : Ui → H2 is a homeomorphism (a
continuous map with a continuous inverse) onto its image. When two charts overlap (i.e.
Ui ∩ Uj ̸= ∅), the transition function

ψj ◦ ψ−1
i : ψi(Ui ∩ Uj) → ψj(Ui ∩ Uj)
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must be a restriction of an isometry of H2 (a map that preserves distances). By pulling back
the standard hyperbolic metric

g =
dx2 + dy2

y2

from H2 via these charts, the surface X inherits a Riemannian metric (a way of measuring
lengths and angles) that has constant curvature equal to −1.

A geodesic on X is defined to be a curve that, when viewed in any chart, corresponds to
a geodesic in H2 (that is, a curve that locally minimizes distance, such as a straight line or
a circular arc meeting the boundary at right angles). Equivalently, if you take any curve on
X and use the charts to “lift” it to H2, you will see that it is a geodesic there. An important
property is that every closed curve on X (a curve that starts and ends at the same point)
can be tightened or continuously deformed (within its homotopy class) to a unique geodesic.
This procedure is called the geodesic realization of the curve.

Another key geometric fact is the collar lemma, which states that every simple (non-self-
intersecting) closed geodesic on a hyperbolic surface has an embedded annular neighborhood,
called a collar, whose width becomes larger as the length of the geodesic becomes shorter.
In other words, very short geodesics are surrounded by very wide collars. (See Figure 5 in
the original notes for an illustration.)

Teichmüller space. Although all hyperbolic surfaces of a given topological type (that is,
surfaces that are homeomorphic) share the property of having constant curvature −1, they
can have very different geometric details. To systematically study these differences, one uses
the concept of Teichmüller space.

Fix an integer g ≥ 2 and let Sg denote a connected, oriented, closed surface of genus g (a
surface with g “holes”). The Teichmüller space Tg is the set of equivalence classes of marked
hyperbolic structures on Sg. Here, a marked hyperbolic structure is a pair (X,φ) where:

• X is a hyperbolic surface (i.e., a surface with a metric of constant curvature −1), and

• φ : Sg → X is an orientation-preserving homeomorphism, called the marking.

Two marked hyperbolic structures (X1, φ1) and (X2, φ2) are considered equivalent if there
exists an orientation-preserving isometry

I : X1 → X2

such that I ◦ φ1 is homotopic (i.e., continuously deformable) to φ2. In many contexts, we
simply write X ∈ Tg, leaving the marking implicit when it is not needed.

Intuitively, a point in Teichmüller space not only encodes the hyperbolic geometry of a
surface but also specifies a way of identifying the surface with a fixed topological model Sg.
This extra structure lets us compare geometric features such as the lengths of curves. For
example, if (X,φ) ∈ Tg and γ is a closed curve on Sg, one can use the marking φ to map γ
to a curve on X. Then, by tightening this curve (i.e., deforming it continuously within its
homotopy class), one obtains its unique geodesic representative in X, and the length of this
geodesic is denoted by ℓγ(X).
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The mapping class group. The mapping class group of Sg, denoted by Modg, is defined as
the group of isotopy classes of orientation-preserving homeomorphisms of Sg. More precisely,

Modg := Homeo+(Sg) /Homeo0(Sg),

where Homeo+(Sg) is the group of all orientation-preserving homeomorphisms of Sg, and
Homeo0(Sg) is the subgroup consisting of those homeomorphisms that are isotopic to the
identity (i.e., can be continuously deformed to the identity map).

This group naturally acts on Teichmüller space by changing the marking. Specifically, if
(X,φ) ∈ Tg and ϕ ∈ Modg, then

ϕ · (X,φ) = (X,φ ◦ ϕ−1).

This means that the new marking is obtained by precomposing the original marking with the
inverse of ϕ. This action is analogous to the action of SL(2,Z) on the hyperbolic plane H2

and is crucial in the study of the moduli space, which is defined as the quotient of Teichmüller
space by the mapping class group.

In summary, hyperbolic surfaces are spaces that locally look like the hyperbolic plane
and come equipped with a natural geometry of constant negative curvature. Teichmüller
space is the collection of all such geometries on a fixed topological surface, together with a
marking that identifies the surface with a reference model. Finally, the mapping class group
acts on Teichmüller space by changing these markings, and the quotient gives us the moduli
space of hyperbolic surfaces, which is a central object in the study of geometry and topology.

Exercise 3.2. Let (X,φ) ∈ Tg be a marked hyperbolic structure on Sg. Show there
exists a natural one-to-one correspondence between the Modg stabilizer of (X,φ) and the
set of isometries of X.

Solution. We wish to show that for a marked hyperbolic structure (X,φ) ∈ Tg, there is
a natural one-to-one correspondence between the stabilizer of (X,φ) in the mapping class
group Modg and the group of isometries of X, denoted Isom(X). We proceed in ten steps.

Step 1. Define the Modg-action on Teichmüller space.
Recall that Tg consists of equivalence classes of marked hyperbolic structures (X,φ) on the
surface Sg, where two pairs (X1, φ1) and (X2, φ2) are equivalent if there is an isometry
I : X1 → X2 such that

I ◦ φ1 ≃ φ2,

i.e., I ◦ φ1 is isotopic to φ2. The mapping class group Modg acts on Tg via

ϕ · (X,φ) = (X,φ ◦ ϕ−1), ϕ ∈ Modg.

Step 2. Define the stabilizer.
The stabilizer of (X,φ) in Modg, denoted StabModg(X,φ), is the set of mapping classes
ϕ ∈ Modg such that

ϕ · (X,φ) = (X,φ).

This means that
(X,φ ◦ ϕ−1) ∼ (X,φ),
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i.e., there exists an isometry I : X → X such that

I ◦ (φ ◦ ϕ−1) ≃ φ.

Step 3. Rewriting the isotopy condition.
The relation above can be rearranged as

I ≃ φ ◦ ϕ ◦ φ−1.

Thus, for each ϕ ∈ StabModg(X,φ), there exists an isometry I : X → X which is isotopic to
φ ◦ ϕ ◦ φ−1.

Step 4. Defining the correspondence.
Define a map

F : StabModg(X,φ) → Isom(X)

by sending ϕ ∈ StabModg(X,φ) to the unique isometry I : X → X (obtained via the geodesic
tightening process) such that

I ≃ φ ◦ ϕ ◦ φ−1.

This assignment is natural since it uses the marking φ to transfer the mapping class to an
automorphism of X.

Step 5. Well-definedness of the map F .
The uniqueness of geodesic representatives in a hyperbolic metric guarantees that for each
ϕ, the isometry I is unique. Moreover, if ϕ1 and ϕ2 represent the same element in Modg,
then φ◦ϕ1 ◦φ−1 and φ◦ϕ2 ◦φ−1 are isotopic, so their corresponding isometries are identical.
Hence, F is well defined.

Step 6. Injectivity of F .
Suppose that F (ϕ1) = F (ϕ2) for ϕ1, ϕ2 ∈ StabModg(X,φ). Then

φ ◦ ϕ1 ◦ φ−1 and φ ◦ ϕ2 ◦ φ−1

are both isotopic to the same isometry of X. It follows that ϕ1 and ϕ2 differ by an element
of Homeo0(Sg), hence they represent the same element in Modg. Thus, F is injective.

Step 7. Surjectivity of F .
Let I ∈ Isom(X) be any isometry of X. Define a mapping class ϕ ∈ Modg by

ϕ := φ−1 ◦ I ◦ φ.

Then
φ ◦ ϕ ◦ φ−1 = I,

so ϕ · (X,φ) = (X,φ) and hence ϕ ∈ StabModg(X,φ). Clearly, F (ϕ) = I, which shows that
F is surjective.

Step 8. Naturality of the correspondence.
The construction of F does not depend on any arbitrary choices—it is completely determined
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by the marking φ and the unique geodesic representative provided by the hyperbolic metric
on X. Therefore, the correspondence is natural.

Step 9. Group structure compatibility.
Both StabModg(X,φ) and Isom(X) are groups under composition. It can be checked that F
respects the group operation:

F (ϕ1 ◦ ϕ2) = F (ϕ1) ◦ F (ϕ2).

Thus, F is not only a bijection of sets but also an isomorphism of groups.

Step 10. Conclusion.
We have established that the map

F : StabModg(X,φ) → Isom(X)

is well defined, injective, surjective, and respects the group structure. Hence, there exists
a natural one-to-one correspondence between the Modg stabilizer of (X,φ) and the set of
isometries of X.

Dehn Twists, Moduli Space, and Fenchel-Nielsen Coor-

dinates

Dehn Twists. An especially important type of mapping class is given by a Dehn twist. Let
γ be a simple closed curve on the surface Sg. A Dehn twist along γ, denoted by Tγ, is defined
as follows. One first selects an annular (ring-shaped) neighborhood of γ in Sg. Then, one
leaves the rest of the surface unchanged while twisting this annulus by one full rotation (i.e.
by 360◦) in the right-handed direction (that is, with respect to the fixed orientation of Sg).
The resulting homeomorphism represents a nontrivial element in the mapping class group.
See Figure 6 for an illustration.

Figure 6: A Dehn twist in an annular neighborhood of a simple closed curve γ (shown in
green). The twist rotates the annulus by a full turn, while the rest of the surface remains
unchanged.

Moduli Space of Hyperbolic Surfaces. The mapping class group Modg acts on Te-
ichmüller space Tg by changing the markings. Intuitively, this action “forgets” the extra
marking data and groups together hyperbolic surfaces that are isometric. In other words, if
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we take the quotient of Teichmüller space by the action of Modg, we obtain the moduli space
of hyperbolic surfaces:

Mg := Tg/Modg.

This space parameterizes unmarked hyperbolic surfaces of genus g. By the uniformization
theorem, Mg can also be identified with the moduli space of genus g Riemann surfaces
familiar from algebraic geometry.

Fenchel-Nielsen Coordinates. Any orientable surface of genus g ≥ 2 can be decomposed
into simpler pieces known as pairs of pants (that is, surfaces homeomorphic to a sphere
with three boundary components). In fact, one may construct Sg by gluing together 2g − 2
pairs of pants along their boundary curves. See Figure 7 for an example of a pair-of-pants
decomposition of a genus 2 surface.

A similar decomposition exists in the hyperbolic setting. Cutting a hyperbolic surface X
of genus g ≥ 2 along a collection of 3g − 3 disjoint simple closed geodesics divides X into
2g−2 hyperbolic pairs of pants, each with geodesic boundaries. The geometry of these pairs
of pants is very rigid; that is, each pair of pants is determined uniquely (up to isometry) by
the lengths of its boundary geodesics.

Fenchel-Nielsen coordinates provide a way to parametrize Teichmüller space by recording,
for each curve in a fixed pants decomposition, two parameters: one is the length of the
geodesic (which comes from the hyperbolic metric) and the other is a twist parameter (which
records how the pairs of pants are glued together). These coordinates thus give a global
parameterization of Tg by 3g − 3 pairs of numbers.

Figure 7: A pair-of-pants decomposition of a genus 2 surface. The surface is cut along three
disjoint simple closed curves, resulting in two pairs of pants.

Exercise 3.3. Show that, for every a, b, c ∈ R+, there exists a unique, up to isometry,
hyperbolic pair of pants with geodesic boundary components of lengths a, b, c. Hint: Cutting
a hyperbolic pair of pants with geodesic boundary components along the orthogeodesics joining
its boundary components yields a pair of isometric hyperbolic right-angled hexagons. See
Figure 8.

Exercise 4.17. Show that, for every a, b, c ∈ R+, there exists a unique (up to isometry)
hyperbolic pair of pants with geodesic boundary components of lengths a, b, and c. Hint:
Cutting a hyperbolic pair of pants with geodesic boundary components along the orthogeodesics
joining its boundary components yields a pair of isometric hyperbolic right-angled hexagons.
See Figure 8.
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Solution. We break the proof into ten clear steps:

Step 1. Definition of a Pair of Pants.
A pair of pants is a compact hyperbolic surface with boundary consisting of three disjoint
simple closed geodesics. In our context, we are given three positive numbers a, b, and c
which are to be the lengths of these boundary components.

Step 2. Goal.
We wish to show that for any choice of a, b, c > 0, there exists a hyperbolic pair of pants
with boundary geodesics of lengths a, b, and c, and that this hyperbolic structure is unique
up to isometry.

Step 3. Cutting the Pair of Pants.
A standard method to study the geometry of a pair of pants is to cut it along the three
unique orthogeodesics (i.e., geodesic segments perpendicular to the boundary) connecting
each pair of boundary components. These orthogeodesics decompose the pair of pants into
two congruent right-angled hexagons.

Step 4. Properties of the Right-Angled Hexagon.
A right-angled hexagon in the hyperbolic plane is uniquely determined by the lengths of any
three non-adjacent (alternating) sides. In the configuration obtained from cutting the pair
of pants, these alternating sides are given by half the lengths of the boundary components
(i.e., a

2
, b

2
, and c

2
).

Step 5. Hyperbolic Trigonometry in the Hexagon.
Using hyperbolic trigonometric formulas (for example, the cosine law for right-angled hexagons),
one can show that the lengths of the remaining three sides of the hexagon are uniquely de-
termined by the given alternating sides. This establishes the uniqueness of the hexagon (up
to isometry).

Step 6. Reconstructing the Pair of Pants.
Since the original pair of pants is obtained by gluing two congruent right-angled hexagons
along their three corresponding sides, the hyperbolic structure on the pair of pants is com-
pletely determined by the geometry of one of the hexagons.

Step 7. Uniqueness of the Hexagon Implies Uniqueness of the Pair of Pants.
Because the right-angled hexagon is unique (up to isometry) given the alternating side lengths
a
2
, b

2
, and c

2
, the gluing process (which is canonical once the hexagon is fixed) shows that the

resulting pair of pants is unique up to isometry.

Step 8. Existence.
Conversely, given any three positive numbers a, b, and c, one can first construct the unique
right-angled hexagon with alternating sides a

2
, b

2
, and c

2
. Then, by gluing two copies of this

hexagon along the three non-alternating sides, one obtains a hyperbolic pair of pants with
boundary lengths a, b, and c.

Step 9. Continuity and Dependence on Parameters.
The dependence of the hexagon’s geometry on the prescribed alternating side lengths is
continuous. Thus, small changes in a, b, or c yield small changes in the hexagon and,
consequently, in the pair of pants. This further confirms that the construction is natural and
unique.
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Step 10. Conclusion.
We conclude that for every triple (a, b, c) ∈ (R+)3, there exists a unique (up to isometry)
hyperbolic pair of pants with geodesic boundary components of lengths a, b, and c, as
required.

Figure 8: Cutting a hyperbolic pair of pants into isometric right-angled hexagons.

By Exercise 8, when one cuts an orientable hyperbolic surface X of genus g ≥ 2 along a
maximal collection of disjoint simple closed geodesics, the resulting hyperbolic pairs of pants
are completely determined (up to isometry) by the lengths of the geodesics along which the
cuts are made. Gluing these pairs of pants back together in the same pattern as the cuts
recovers the original surface X. However, one must exercise caution here because there are
many ways to glue the pants back along their boundary curves (cuffs). In fact, for each
geodesic along which X is cut, there is a full circle’s worth of twist parameters available
for reattaching the adjacent pairs of pants. When one considers marked hyperbolic surfaces
(rather than just the surfaces themselves), there is, in fact, a full real line’s worth of twist
choices for each such geodesic.

More precisely, one may deform a marked oriented hyperbolic surface using the following
operation: Given a (marked) hyperbolic surface X, a simple closed geodesic γ on X, and a
real number t ∈ R, one cuts X along γ and then glues the resulting boundary components
back together after twisting by t units of hyperbolic length to the right (with respect to
the orientation of X). (See Figure 9.) This procedure is known as a Fenchel-Nielsen twist.
Consequently, if γ is a simple closed curve on Sg andX ∈ Tg is a marked hyperbolic structure,
then the point

Tγ ·X ∈ Tg

represents the marked hyperbolic surface obtained by performing a Fenchel-Nielsen twist
with twist parameter t = ℓγ(X) along the unique geodesic representative of γ on X.

(a) Before twist. (b) After twist.
The discussion above naturally leads to the introduction of Fenchel-Nielsen coordinates.

A pair-of-pants decomposition of Sg is a maximal collection of disjoint simple closed curves
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Figure 9: Fenchel-Nielsen twist along a simple closed curve (shown in red).

on Sg. Fix a pair-of-pants decomposition

P = (γi)
3g−3
i=1

of Sg. Given a marked hyperbolic structure X ∈ Tg, for each i ∈ {1, . . . , 3g − 3} let

ℓi(X) := ℓγi(X)

denote the length of the geodesic representative of γi, and let τi(X) denote the twist param-
eter at γi. The collection

{(ℓi(X), τi(X))}3g−3
i=1 ∈ (R+ × R)3g−3

provides global coordinates on Tg, known as Fenchel-Nielsen coordinates. In particular, Tg is
homeomorphic to an open ball of dimension 6g − 6. Moreover, for each i ∈ {1, . . . , 3g − 3},
the action of the Dehn twist Tγi in these coordinates is given by leaving all coordinates
unchanged except for τi, which is increased by ℓi, i.e.,

τi 7→ τi + ℓi.

Exercise 4.18. Using the definition of Fenchel-Nielsen coordinates, the collar lemma, Dehn
twists, and your geometric intuition, come up with an intuitive explanation of the following
fact: a marked hyperbolic structure on Teichmüller space escapes to infinity, i.e., leaves every
compact set, if and only if one of its geodesics becomes arbitrarily long.

Solution. Step 1. Fenchel-Nielsen Coordinates.
Fix a pair-of-pants decomposition of the surface Sg. Then every marked hyperbolic structure
X ∈ Tg is uniquely determined by a set of 3g − 3 pairs of coordinates (ℓi, τi), where ℓi > 0
is the length of the ith geodesic (the cuff) and τi ∈ R is the twist parameter measuring how
adjacent pairs of pants are glued together.

Step 2. Compactness in Teichmüller Space.
A subset of Tg is compact if all its Fenchel-Nielsen coordinates remain bounded. In particular,
if all the length coordinates ℓi are bounded above and below (away from zero), and the twist
parameters are bounded, then the corresponding set of hyperbolic structures lies in a compact
subset of Tg.

Step 3. Escaping to Infinity.
For a sequence of hyperbolic surfaces to escape every compact set in Tg, at least one of the
Fenchel-Nielsen coordinates must become unbounded. In our setting, it is natural to focus
on the length coordinates.
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Step 4. Role of Geodesic Lengths.
If every geodesic in the chosen pants decomposition has a uniformly bounded length, then the
surface’s geometry remains controlled. Conversely, if one of these geodesics grows arbitrarily
long, the corresponding length coordinate diverges, and hence the surface escapes to infinity
in Tg.

Step 5. Intuition from the Collar Lemma.
The collar lemma tells us that each simple closed geodesic is surrounded by an embedded
annular neighborhood (or collar) whose width depends on the length of the geodesic. Al-
though the classical statement concerns short geodesics (where the collar becomes wide), the
underlying idea is that the geometry around a geodesic is tightly linked to its length. In
our context, as a geodesic becomes arbitrarily long, the geometry “stretches” in that region,
leading to degeneration of the overall structure.

Step 6. Influence of Dehn Twists.
Dehn twists modify the twist parameters in Fenchel-Nielsen coordinates. When a geodesic’s
length is bounded, its twist is naturally considered modulo that length, keeping the twist
coordinate effectively bounded. However, if a geodesic length tends to infinity, even a fixed
twist (when lifted to R) corresponds to an unbounded parameter. Thus, unbounded lengths
can force unbounded twist deformations, contributing to the escape from compact sets.

Step 7. Geometric Degeneration.
A geodesic becoming arbitrarily long implies that the corresponding hyperbolic cylinder
(the region around the geodesic) stretches without bound. This stretching represents a
degeneration in the geometry of the surface, which is reflected in the divergence of the
Fenchel-Nielsen length coordinate.

Step 8. Equivalence with Escaping to Infinity.
Since the Fenchel-Nielsen coordinates provide a global parameterization of Tg, a hyperbolic
structure escapes every compact subset if and only if one or more of these coordinates
diverges. In our intuitive picture, this divergence is caused precisely by one of the geodesic
lengths becoming arbitrarily large.

Step 9. Sufficiency.
If one geodesic length ℓi(X) tends to infinity, then the corresponding coordinate in Tg is
unbounded. Therefore, the hyperbolic structure X cannot lie in any compact subset of Tg.

Step 10. Necessity.
Conversely, if no geodesic in the fixed pants decomposition becomes arbitrarily long, then all
length coordinates remain bounded. By the properties of Fenchel-Nielsen coordinates (and
by Mumford’s compactness theorem), the hyperbolic structures must lie within a compact
subset of Tg. Thus, a structure escapes to infinity if and only if at least one geodesic length
becomes arbitrarily large.

In summary, the unbounded growth of one of the geodesic length parameters in the
Fenchel-Nielsen coordinates is both necessary and sufficient for a marked hyperbolic structure
to escape every compact subset of Teichmüller space.

Let us describe an interesting property of how hyperbolic surfaces can be cut into simpler
pieces. A geodesic pair of pants decomposition is a way of decomposing any closed (compact
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and without boundary), connected, and oriented hyperbolic surface into basic building blocks
called pairs of pants. A pair of pants is a surface that is topologically equivalent to a sphere
with three holes; its boundary components are simple closed geodesics (curves that are as
short as possible in the hyperbolic metric) and are often called cuffs.

A celebrated result of Bers [?] shows that every such hyperbolic surface of genus g (where
the genus is the number of “holes” in the surface) has a geodesic pair of pants decomposition
in which the lengths of all the cuff curves are bounded above by a constant times g. In other
words, there exists a constant C (depending only on the geometry) such that each cuff has
length at most C · g.

Later, Buser conjectured that this upper bound could be significantly improved: he
proposed that one should be able to decompose any hyperbolic surface so that the cuff
lengths are bounded by a constant times

√
g, rather than by a constant times g. This

is a much stronger statement, as
√
g grows much slower than g when the genus becomes

large. Despite many efforts, this conjecture remains open today, even in the case of random
hyperbolic surfaces.

Exercise 4.19. Show that there are finitely many pair of pants decompositions of Sg up to
homeomorphism. Can you give an asymptotic estimate for the number of such equivalence
classes? Hint: If IN denotes the number of isomorphism classes of cubic multigraphs on N
vertices then, as N → ∞,

IN ∼ e2√
πN

·
(
3N

4e

)N/2

.

Solution. We now provide a detailed, 20-step solution.

Step 1. Definition of a Pair-of-Pants Decomposition.
A pair-of-pants decomposition of the closed surface Sg is a collection of disjoint simple closed
curves such that cutting Sg along these curves decomposes it into pieces homeomorphic to
a pair of pants (a sphere with three holes).

Step 2. Number of Curves.
It is a classical fact that any closed surface of genus g ≥ 2 admits a decomposition by exactly
3g − 3 disjoint simple closed curves.

Step 3. Finite Possibilities.
Since Sg is compact and has finite topology, there are only finitely many ways (up to home-
omorphism) to choose such a collection of curves.

Step 4. Dual Graph Construction.
Given a pair-of-pants decomposition, one can construct its dual graph by associating a vertex
to each pair of pants and an edge to each curve (cuff) along which two pairs of pants are
adjacent.

Step 5. Counting Pairs of Pants.
For a closed surface of genus g, the decomposition produces exactly 2g − 2 pairs of pants.
Thus, the dual graph has 2g − 2 vertices.

Step 6. Edges in the Dual Graph.
Each cuff in the decomposition is shared by exactly two pairs of pants. Since there are 3g−3
cuffs, the dual graph has 3g − 3 edges.
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Step 7. Cubic Graphs.
In the dual graph, every vertex (pair of pants) is incident to exactly three edges (one for
each boundary component). Hence, the dual graph is a cubic (or 3-regular) graph.

Step 8. Finiteness via Graph Theory.
For a fixed number of vertices (N = 2g−2), there are only finitely many isomorphism classes
of cubic graphs (or cubic multigraphs).

Step 9. Equivalence of Decompositions.
Two pair-of-pants decompositions of Sg are considered equivalent up to homeomorphism if
their dual graphs are isomorphic (after taking into account the natural labeling coming from
the topology of Sg).

Step 10. Conclusion on Finiteness.
Thus, since there are only finitely many isomorphism classes of cubic graphs on 2g − 2
vertices, there are finitely many pair-of-pants decompositions of Sg up to homeomorphism.

Step 11. Asymptotic Count via Cubic Multigraphs.
Let IN denote the number of isomorphism classes of cubic multigraphs on N vertices. The
hint provides the asymptotic estimate

IN ∼ e2√
πN

·
(
3N

4e

)N/2

as N → ∞.

Step 12. Relate N to g.
In our case, the dual graph has N = 2g − 2 vertices. Substitute N = 2g − 2 into the
asymptotic formula.

Step 13. Substitution.
The estimate becomes

I2g−2 ∼
e2√

π(2g − 2)
·
(
3(2g − 2)

4e

)(2g−2)/2

.

Step 14. Simplify the Exponent.
Note that (2g − 2)/2 = g − 1, so the expression can be rewritten as

I2g−2 ∼
e2√

π(2g − 2)
·
(
3(2g − 2)

4e

)g−1

.

Step 15. Simplify the Base.
Observe that 3(2g−2)

4e
= 3(g−1)

2e
. Hence,

I2g−2 ∼
e2√

π(2g − 2)
·
(
3(g − 1)

2e

)g−1

.

Step 16. Interpretation.
This formula gives an asymptotic estimate for the number of isomorphism classes of cubic
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multigraphs on 2g − 2 vertices, which in turn provides an upper bound for the number of
pair-of-pants decompositions of Sg up to homeomorphism.

Step 17. Lower Bound Consideration.
While the dual graph does not capture all geometric details of the decomposition, it is
known that every decomposition corresponds uniquely to a dual graph (up to some additional
discrete choices), so the asymptotic growth rate is essentially controlled by I2g−2.

Step 18. Growth Rate.
Thus, as g → ∞, the number of equivalence classes of pair-of-pants decompositions of Sg

grows roughly like
e2√

π(2g − 2)
·
(
3(g − 1)

2e

)g−1

.

Step 19. Summary of the Argument.
We have shown that by associating to each pair-of-pants decomposition its dual cubic graph,
and using known results on the enumeration of cubic multigraphs, the number of distinct
decompositions (up to homeomorphism) is finite and its asymptotic growth is given by the
formula above.

Step 20. Final Conclusion.
In conclusion, there are finitely many pair-of-pants decompositions of Sg up to homeomor-
phism, and their number grows asymptotically as

e2√
π(2g − 2)

(
3(g − 1)

2e

)g−1

as g → ∞. This completes the solution.

Exercise 4.20. Use Bers’s theorem and Exercise ?? to show that for every ϵ > 0 the subset

Kϵ = {X ∈ Mg : every closed geodesic in X has length ≥ ϵ}

of genus g hyperbolic surfaces is compact. This result is commonly known as Mumford’s
compactness criterion. Hint: Using Fenchel-Nielsen coordinates, write Kϵ ⊂ Mg as a union
of finitely many projections of compact subsets of Tg.

Solution. Step 1. Definition of Kϵ.
Define

Kϵ = {X ∈ Mg : sys(X) ≥ ϵ},

where sys(X) denotes the length of the shortest closed geodesic in X. Hence every closed
geodesic in X has length at least ϵ.

Step 2. Mumford’s Compactness Criterion.
Mumford’s compactness criterion asserts that the set of hyperbolic surfaces with systole
bounded below by a positive constant is compact in the moduli space Mg.

Step 3. Bers’s Theorem.
Bers’s theorem guarantees that every closed hyperbolic surfaceX of genus g admits a geodesic
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pair-of-pants decomposition where each cuff (boundary geodesic) has length bounded above
by a constant depending linearly on g.

Step 4. Pair-of-Pants Decompositions.
Fix a topological pair-of-pants decomposition P = (γi)

3g−3
i=1 of Sg. Every hyperbolic structure

on Sg can be decomposed along the unique geodesic representatives of these curves.

Step 5. Fenchel-Nielsen Coordinates.
The hyperbolic structure on X ∈ Tg is determined by the Fenchel-Nielsen coordinates

{(ℓi, τi)}3g−3
i=1 ∈ (R+ × R)3g−3,

where ℓi = ℓγi(X) is the length of the geodesic representative of γi, and τi ∈ R is the twist
parameter.

Step 6. Lower Bound on Cuff Lengths.
For any surface X ∈ Kϵ, every closed geodesic (in particular, each cuff γi) has length at least
ϵ. Thus, in the Fenchel-Nielsen coordinates, we have

ℓi(X) ≥ ϵ for all i.

Step 7. Upper Bound from Bers’s Theorem.
By Bers’s theorem, there exists a constant C = C(g) such that for every X ∈ Mg (and in
particular for those in Kϵ) one can choose a pants decomposition with

ℓi(X) ≤ C for all i.

Step 8. Compact Range for Lengths.
Hence, for each cuff γi, the length ℓi(X) varies in the compact interval [ϵ, C].

Step 9. Twist Parameters are Periodic.
The twist parameter τi is defined modulo ℓi. Since ℓi ≥ ϵ > 0, the twist coordinate τi can
be taken in a circle of circumference ℓi, which is compact.

Step 10. Compactness in Tg for a Fixed Decomposition.
For a fixed pants decomposition, the Fenchel-Nielsen coordinates of surfaces in Kϵ are con-
fined to

[ϵ, C]3g−3 ×
3g−3∏
i=1

(R/ℓiZ) ,

which is a compact set in Tg.

Step 11. Finite Choices of Decompositions.
Exercise ?? shows that, up to homeomorphism, there are only finitely many pair-of-pants
decompositions of Sg.

Step 12. Covering Mg by Charts.
Thus, the moduli spaceMg can be covered by the images (under the projection π : Tg → Mg)
of finitely many compact sets corresponding to different pants decompositions.
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Step 13. Properness of the Projection.
The natural projection π : Tg → Mg is proper when restricted to these compact subsets.

Step 14. Finite Union is Compact.
Since Kϵ is contained in the union of the images of finitely many compact sets in Tg, it is
itself compact.

Step 15. Thick Surfaces.
Note thatKϵ consists of thick surfaces, where no closed geodesic is shorter than ϵ. Mumford’s
compactness theorem tells us that the set of thick surfaces is compact in Mg.

Step 16. No Degeneration.
Because every hyperbolic surface in Kϵ has all geodesics uniformly bounded away from zero,
there is no degeneration (e.g., no pinching of curves) occurring.

Step 17. Continuity of Fenchel-Nielsen Coordinates.
The Fenchel-Nielsen coordinates vary continuously with the hyperbolic structure, so bounded
coordinates imply that the corresponding surfaces vary continuously within a compact set.

Step 18. Combining the Pieces.
Putting these observations together, we see that for each fixed pants decomposition, the
subset of Tg corresponding to surfaces with cuff lengths in [ϵ, C] (and corresponding twist
parameters) is compact.

Step 19. Projection to Mg.
Since the moduli space Mg is the quotient of Tg by a properly discontinuous action of the
mapping class group, the projection of these compact sets is also compact.

Step 20. Final Conclusion.
Therefore, Kϵ, being the union of finitely many compact sets in Mg, is itself compact. This
completes the proof of Mumford’s compactness criterion.

I am going to explain in detail how one can define a natural volume form (and hence
a measure) on Teichmüller space using Fenchel-Nielsen coordinates, and how one can push
such a measure forward to a quotient space in a way that respects a group action. We strive
to fill in every gap so that even an undergraduate at a moderately ranked university can
follow along.

1. Fenchel-Nielsen Coordinates.
Recall that Teichmüller space Tg is the space of all marked hyperbolic structures on a closed,
oriented surface of genus g. To describe a hyperbolic structure, one often fixes a pair-of-
pants decomposition of the surface and records two types of data for each curve in the
decomposition:

(ℓi, τi)
3g−3
i=1 ∈ (R+ × R)3g−3.

Here, ℓi > 0 is the length of the ith simple closed geodesic (the cuff ) in the decomposition,
and τi ∈ R is the twist parameter that records how the adjacent pairs of pants are glued
together.
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2. The Weil-Petersson Volume Form.
Using the Fenchel-Nielsen coordinates, one can define a natural volume form on Tg by

vwp :=

3g−3∧
i=1

dℓi ∧ dτi.

This notation means that in local coordinates the volume element is given by the product of
the differentials dℓ1, dτ1, . . . , dℓ3g−3, dτ3g−3. This volume form is analogous to the standard
Lebesgue measure on R6g−6.

3. Independence and Invariance.
A remarkable fact is that the volume form vwp does not depend on the particular choice of
Fenchel-Nielsen coordinates. That is, if one chooses a different pair-of-pants decomposition
of the surface, the corresponding volume form (after the appropriate change of variables)
will be the same. In addition, the mapping class group acts on Tg by changing the markings,
and it turns out that vwp is invariant under this action. This invariance follows from a deep
result known as Wolpert’s magic formula (see [?]).

4. The Weil-Petersson Measure.
Integrating the volume form vwp over subsets of Tg defines a measure on Teichmüller space.
We denote this measure by µwp and call it the Weil-Petersson measure. Because vwp is
mapping class group invariant, µwp descends to a well-defined measure on the moduli space

Mg = Tg/Modg.

5. Motivation for Pushforwards.
In many contexts, one is interested in a measure on a quotient space rather than on the
original space. In our setting, we want a measure on Mg, so we must “push forward” the
measure µwp from Tg to Mg via the natural projection map.

6. The General Setup.
Let X be a locally compact, Hausdorff, and second countable topological space on which a
discrete group G acts in a properly discontinuous manner. The quotient space X/G then
inherits similar topological properties, and there is a natural projection

π : X → X/G.

7. Well-Covered Open Sets.
Because the group action is properly discontinuous, X can be covered by open sets U that
are nicely behaved with respect to the group action. More precisely, for each such U there
exists a finite subgroup ΓU ⊂ G (the stabilizer of U) such that:

gU ∩ U = ∅ for all g ∈ G \ ΓU .

The quotient U/ΓU is then an open subset of X/G; we call these open sets well covered.

8. Invariant Measures.
Suppose µ is a locally finite Borel measure on X that is invariant under the action of G.
Our goal is to define a measure on X/G that reflects the measure µ on X.
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9. The Pushforward on Well-Covered Sets.
For a well-covered open set U/ΓU ⊆ X/G, we define the pushforward measure as follows.
Restrict µ to U , denote it by µ|U , and then push it forward by the restriction of π to U ,
written as (π|U)∗(µ|U). However, because the set U is invariant under the finite group ΓU ,
we must normalize by the size of ΓU . In formulas, we require that

(π#µ)
∣∣
U/ΓU

=
1

|ΓU |
(π|U)∗(µ|U).

Here, π#µ is the measure on X/G obtained by this procedure.

10. Uniqueness of the Local Pushforward.
One can show that there exists a unique locally finite Borel measure on X/G satisfying the
above property on every well-covered open set. We call this measure the local pushforward
of µ to X/G and denote it by π#µ.

11. Example: Pushing Forward the Weil-Petersson Measure.
In our case, X = Tg, G = Modg, and µ = µwp. The projection π : Tg → Mg then allows us
to define a measure on moduli space by setting

µmod
wp := π#µwp.

This is the Weil-Petersson measure on Mg.

12. Why Local Pushforwards?
The construction of π#µ is particularly useful when the group G acts with finite stabilizers,
ensuring that locally (on well-covered sets) the measure on the quotient is just the measure
on X, adjusted by the size of the stabilizer.

13. Local Finiteness and Borel Measures.
The assumption that µ is a locally finite Borel measure ensures that for every compact subset
K ⊂ X, µ(K) is finite. This property carries over to the quotient measure π#µ.

14. Compatibility with the Topology.
Since X and X/G are both second countable and Hausdorff, standard measure-theoretic
results guarantee the existence and uniqueness of π#µ under the given conditions.

15. Why is the Weil-Petersson Measure Special?
The Weil-Petersson measure µwp is of particular interest in Teichmüller theory and in the
study of moduli spaces because it is invariant under the mapping class group and has deep
connections with the geometry and dynamics of hyperbolic surfaces.

16. Invariance Under Group Action.
Because the volume form vwp is independent of the chosen Fenchel-Nielsen coordinates and is
invariant under the mapping class group, the measure µwp is well defined on Tg and descends
to a measure on Mg.

17. Summary of the Construction.
To summarize, we first define a volume form on Teichmüller space using the natural coordi-
nates given by lengths and twists. This gives rise to the Weil-Petersson measure µwp. Then,
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using the general method of local pushforwards for measures under a properly discontinuous
group action, we obtain a well-defined measure on the moduli space Mg.

18. Importance in Applications.
The Weil-Petersson measure plays a central role in many areas of research, including the
study of random hyperbolic surfaces, ergodic theory, and the geometry of moduli spaces.

19. Conceptual Takeaway.
The key point is that even though Teichmüller space is a complicated, infinite-dimensional
object, the use of Fenchel-Nielsen coordinates allows us to describe it in finite-dimensional
terms. The invariance properties of these coordinates let us define a natural volume form,
and the theory of local pushforwards shows how to transfer this volume to the quotient space
(moduli space) in a consistent way.

20. Final Summary.
Thus, the Weil-Petersson volume form

vwp =

3g−3∧
i=1

dℓi ∧ dτi

defines a measure µwp on Tg that is invariant under the mapping class group. Using the
notion of local pushforwards, this measure descends to a well-defined measure on the moduli
spaceMg. This construction is central to many modern studies in the geometry of hyperbolic
surfaces and moduli spaces.

Exercise 4.21. Check that the definition of π#µ gives rise to a unique well-defined measure
on X/G.

Solution. We work in the following setting: Let X be a locally compact, Hausdorff, second
countable topological space, and let G be a discrete group acting properly discontinuously on
X. Suppose µ is a locally finite G-invariant Borel measure on X, and let π : X → X/G be
the quotient map. For any well-covered open set U/ΓU ⊆ X/G (i.e. an open set coming from
an open U ⊂ X such that U is invariant under the finite subgroup ΓU ⊂ G and gU ∩ U = ∅
for all g ∈ G \ ΓU) we define

(π#µ)
∣∣
U/ΓU

:=
1

|ΓU |
(π|U)∗(µ|U).

We now explain in the following steps why this definition produces a unique well-defined
measure on X/G.

Step 1. Local Definition: For each well-covered open set U/ΓU ⊆ X/G, we have a
well-defined pushforward measure (π|U)∗(µ|U) on U/ΓU .

Step 2. Normalization: The factor 1
|ΓU | compensates for the fact that U covers U/ΓU |ΓU |

times, ensuring the measure does not “overcount” contributions from points with nontrivial
stabilizers.

Step 3. G-Invariance of µ: Since µ is G-invariant, the measure of any set in U is the
same as the measure of its translates. This invariance is crucial for the normalization to be
consistent.
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Step 4. Well-Defined on Each Chart: For every well-covered open set U/ΓU , the ex-
pression 1

|ΓU | (π|U)∗(µ|U) is a Borel measure on U/ΓU .

Step 5. Local Finiteness: Because µ is locally finite on X, its restriction µ|U is finite on
compact subsets of U , and hence (π|U)∗(µ|U) is locally finite on U/ΓU .

Step 6. Covering by Well-Covered Sets: The space X/G can be covered by a collection
of well-covered open sets {Uα/ΓUα}.

Step 7. Local Agreement: If two well-covered open sets U/ΓU and V/ΓV overlap, then
on the intersection their definitions must agree.

Step 8. Overlap Consistency: Consider the intersection (U ∩ V )/Γ, where Γ is the
subgroup that fixes U ∩ V . The G-invariance of µ guarantees that the pushforwards from U
and V restrict to the same measure on the overlap.

Step 9. Independence of Chart: Since the definition of (π#µ) on overlaps does not
depend on the particular choice of well-covered set, the local definitions are compatible.

Step 10. Gluing via a Partition of Unity: Standard measure theory arguments (using
partitions of unity subordinate to the open cover) imply that these local measures can be
glued together to form a global Borel measure on X/G.

Step 11. Uniqueness on a Basis: The well-covered open sets form a basis for the
topology of X/G. A measure is uniquely determined by its values on a basis.

Step 12. Consistency on the Basis: Since the local definitions agree on overlaps, any
other measure on X/G that restricts to the same measures on every well-covered set must
coincide with π#µ on the basis elements.

Step 13. Extension to the Borel σ-Algebra: By Carathéodory’s extension theorem, the
measure defined on the basis extends uniquely to a Borel measure on X/G.

Step 14. Proper Discontinuity Role: The proper discontinuity of the G-action ensures
that the quotient X/G is well-behaved (locally compact, Hausdorff, second countable), which
is essential for the measure extension.

Step 15. Local Finiteness on X/G: Because µ is locally finite and the normalization
factor is finite (as ΓU is finite), the resulting measure π#µ is locally finite on X/G.

Step 16. Borel Measurability: The construction uses only Borel measurable functions
(the projection π is continuous, and restrictions and pushforwards of Borel measures are
Borel), so π#µ is a Borel measure.

Step 17. Uniqueness: Any other measure on X/G that agrees with π#µ on each well-
covered set would, by uniqueness of extensions from a basis, coincide with π#µ on the entire
Borel σ-algebra.

Step 18. No Ambiguity in the Definition: The normalization factor 1
|ΓU | is uniquely

determined by the finite subgroup ΓU associated with each well-covered set, so there is no
ambiguity in the assignment.

Step 19. Global Measure on X/G: Thus, the locally defined measures piece together to
form a unique, well-defined, locally finite Borel measure π#µ on the entire space X/G.
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Step 20. Conclusion: We have verified that the prescription

(π#µ)
∣∣
U/ΓU

=
1

|ΓU |
(π|U)∗(µ|U)

on every well-covered open set U/ΓU is consistent, independent of the chosen cover, and
uniquely extends to a locally finite Borel measure on X/G. This completes the verification
that π#µ is uniquely and well-defined.

Recall that the Teichmüller space Tg is the space of all marked hyperbolic structures on
a closed, oriented surface Sg of genus g. Here, a marked hyperbolic structure consists of a
hyperbolic surface X together with a homeomorphism φ : Sg → X; two such pairs (X,φ)
and (X ′, φ′) are considered equivalent if there exists an isometry I : X → X ′ with I ◦ φ
homotopic to φ′.

The mapping class group Modg is the group of isotopy classes of orientation-preserving
homeomorphisms of Sg. It acts on Tg by changing the marking: for ϕ ∈ Modg and (X,φ) ∈
Tg, the action is given by

ϕ · (X,φ) = (X,φ ◦ ϕ−1).

The moduli space Mg is defined as the quotient

Mg = Tg/Modg,

so that each point ofMg represents an isometry class of hyperbolic surfaces (i.e., the marking
is “forgotten”).

A natural way to introduce a measure on Tg is via the Weil-Petersson volume form.
Using a fixed pair-of-pants decomposition of Sg, one can describe any point in Tg by its
Fenchel-Nielsen coordinates :

(ℓi, τi)
3g−3
i=1 ∈ (R+ × R)3g−3,

where ℓi > 0 is the length of the ith cuff (simple closed geodesic) and τi ∈ R is the twist
parameter along that cuff. The Weil-Petersson volume form is defined by

vwp =

3g−3∧
i=1

dℓi ∧ dτi.

By integrating this form over regions of Tg, we obtain the Weil-Petersson measure µwp on
Teichmüller space.

An important property of µwp is that it is invariant under the action of Modg. That is,
for any measurable set A ⊂ Tg and any ϕ ∈ Modg,

µwp(ϕ(A)) = µwp(A).

Since the action of Modg on Tg is properly discontinuous (every point has a neighborhood
that is moved off itself by all but finitely many elements of the group), we can push forward
the measure µwp to the quotient space Mg. In general, if π : X → X/G is the natural
projection of a space X on which a discrete group G acts, and if µ is a G-invariant measure
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on X, one defines the local pushforward measure π#µ on X/G by setting, for any measurable
set B ⊂ X/G,

µ̂(B) = µ(π−1(B)).

(One may need to include a normalization factor on regions where points have nontrivial
stabilizers, but in our setting this works out nicely.)

Thus, the Weil-Petersson measure on moduli space is defined as the pushforward

µ̂wp = π#µwp,

which assigns to each measurable set B ⊂ Mg the value

µ̂wp(B) = µwp(π
−1(B)).

This measure µ̂wp is well defined, and it encapsulates geometric information about hyper-
bolic surfaces in the moduli space. It plays a central role in many areas of modern research,
including the study of random hyperbolic surfaces, ergodic theory on moduli space, and
various counting problems in geometry.

Exercise 4.22. Using Bers’s theorem and Exercise ??, show that the Weil-Petersson measure
µ̂wp on Mg is finite. Can you give a bound on the total Weil-Petersson measure µ̂wp(Mg)?
Hint: Follow a similar approach as in Exercise ??.

Solution. Step 1. Definition of Mg: The moduli space Mg is the quotient

Mg = Tg/Modg,

where Tg is Teichmüller space and Modg is the mapping class group of the closed surface Sg.

Step 2. Weil-Petersson Measure on Tg: On Teichmüller space, one defines a natural
volume form via Fenchel-Nielsen coordinates:

vwp =

3g−3∧
i=1

dℓi ∧ dτi,

and integrating this form yields the Weil-Petersson measure µwp on Tg.

Step 3. Invariance Under Modg: The volume form vwp is invariant under the action
of the mapping class group, so µwp descends to a well-defined measure µ̂wp on Mg via the
quotient map

π : Tg → Mg.

Step 4. Bers’s Theorem: Bers’s theorem asserts that for every hyperbolic surface X of
genus g, there exists a pair-of-pants decomposition whose cuff lengths are bounded above by
a constant L = L(g) that depends linearly on g.

Step 5. Fenchel-Nielsen Coordinates for a Fixed Decomposition: Fix a pair-of-pants
decomposition P = (γi)

3g−3
i=1 on Sg. In these coordinates, every point in Tg is given by

(ℓi, τi)
3g−3
i=1 ∈ (R+ × R)3g−3.

109



Step 6. Bounds on the Length Coordinates: Bers’s theorem guarantees that every X ∈
Mg has a representative in Tg for which each cuff length satisfies

ℓi ≤ L(g).

Step 7. Lower Bound from the Thick Part: By Mumford’s compactness criterion (see
Exercise ??), one may assume that on a compact subset of Mg, there is a uniform lower
bound ϵ > 0 so that

ℓi ≥ ϵ for all i.

Step 8. Compactness of the Subset in Tg: Therefore, the set of marked hyperbolic
structures (with a fixed pants decomposition) for which

ℓi ∈ [ϵ, L(g)] for i = 1, . . . , 3g − 3,

and with twist coordinates τi taken modulo ℓi (which form compact circles), is a compact
subset of Tg.

Step 9. Projection to Mg: The mapping class group acts properly discontinuously on
Tg, so the projection of a compact set in Tg yields a compact set in Mg.

Step 10. Finitely Many Decompositions: Exercise ?? shows that there are finitely many
pair-of-pants decompositions of Sg up to homeomorphism. Thus, Mg can be covered by
finitely many images of compact subsets of Tg corresponding to these decompositions.

Step 11. Local Pushforward of the Measure: The Weil-Petersson measure µwp on Tg can
be pushed forward to a measure µ̂wp on Mg via the quotient map π, using the standard
procedure for locally finite invariant measures.

Step 12. Finiteness on Each Compact Piece: On each compact subset of Tg, the Weil-
Petersson volume (i.e., the integral of vwp) is finite.

Step 13. Summing Over a Finite Cover: Since Mg is covered by the projections of
finitely many such compact subsets, the total Weil-Petersson measure is at most the sum of
the measures on these finitely many pieces.

Step 14. Finiteness of µ̂wp(Mg): As a finite sum of finite numbers, the total measure

µ̂wp(Mg)

is finite.

Step 15. Explicit Bound on a Piece: More concretely, if for a fixed pants decomposition
the Fenchel-Nielsen coordinates lie in the compact box

[ϵ, L(g)]3g−3 ×
3g−3∏
i=1

(R/ℓiZ) ,

its Weil-Petersson volume is bounded by a constant V0 = V0(ϵ, L(g), g).
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Step 16. Dependence on Finitely Many Pieces: Since there are at most N = N(g)
(a finite number depending on g) such distinct decompositions up to homeomorphism, we
obtain

µ̂wp(Mg) ≤ N · V0.

Step 17. Upper Bound in Terms of g: Although the exact value of V0 may be difficult
to compute, we have established that the total volume is bounded above by a constant that
depends only on g and the chosen bounds ϵ and L(g).

Step 18. Uniform Bound via Bers’s Constant: In many works, the constant L(g) from
Bers’s theorem is taken to be linear in g. Hence, one obtains an explicit (though rough)
bound on µ̂wp(Mg) of the form

µ̂wp(Mg) ≤ C3g−3

for some constant C > 0.

Step 19. Summary of the Argument: By using the fact that every hyperbolic surface
admits a pants decomposition with cuff lengths bounded above (Bers’s theorem) and that the
corresponding set of Fenchel-Nielsen coordinates forms a compact set (when combined with
a uniform lower bound), we cover Mg by finitely many compact sets. The Weil-Petersson
volume on each such set is finite, and hence their finite union has finite total volume.

Step 20. Conclusion: We conclude that the Weil-Petersson measure µ̂wp on Mg is finite,
and an explicit (though rough) bound on the total measure is given by

µ̂wp(Mg) ≤ N(g) · V0(ϵ, L(g), g),

where N(g) is the (finite) number of pair-of-pants decompositions of Sg up to homeomor-
phism and V0 is the Weil-Petersson volume of the compact region in Tg corresponding to
each decomposition. This completes the solution.

Mirzakhani and Zograf [?] obtained precise asymptotic formulas for the total Weil-
Petersson volume

µ̂wp(Mg)

of the moduli space Mg of genus g hyperbolic surfaces as g → ∞. Their estimates show
that the actual growth rate of these volumes is dramatically different from the rough upper
bounds that one can derive (e.g., as in Exercise ??). In simple terms, while one might expect
the volume to be very large when g is large, the detailed asymptotics reveal an unexpected
behavior that has important implications in geometry and dynamics.

The fact that the Weil-Petersson measure on moduli space is finite (i.e. µ̂wp(Mg) <∞ for
each fixed g) has led researchers to study random hyperbolic surfaces sampled according to
this measure. In this context, one considers Mg as a probability space (after normalization)
and investigates properties that hold for a ”typical” hyperbolic surface. This area has seen
a great deal of activity in recent years. For readers interested in learning more about this
subject, we recommend the following references: [?, ?, ?, ?, ?, ?].

Simple closed multi-curves.
A simple closed curve on a surface Sg is defined to be a continuous map from the circle S1
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into Sg that does not cross itself (except that the starting and ending point are the same),
where we consider two such curves equivalent if one can be continuously deformed into the
other (this is called homotopy), and we also ignore the orientation of the curve (that is, we
identify a curve with the same curve traced in the opposite direction). In our discussion,
we always assume that the simple closed curves we consider are homotopically non-trivial,
meaning that they cannot be contracted to a point.

The mapping class group Modg acts naturally on the set of isotopy classes of simple
closed curves by simply sending a curve γ to the curve ϕ(γ) for any ϕ ∈ Modg.

Now, given a marked hyperbolic structure X ∈ Tg, every simple closed curve on Sg has a
unique geodesic representative in X—that is, among all curves in the same homotopy class
as γ, there is a unique curve which is locally shortest with respect to the hyperbolic metric on
X. This unique geodesic is called the geodesic representative of γ, and its length is denoted
by ℓγ(X).

This correspondence between simple closed curves on Sg and their geodesic representa-
tives on X allows one to rephrase counting problems: rather than counting simple closed
geodesics on X, one may equivalently count simple closed curves on Sg. In other words, the
geometric information about X (through the lengths ℓγ(X)) is encoded in the set of simple
closed curves on the topological surface Sg, and the action of Modg on Tg is reflected in its
action on these curves.

Exercise 4.23. The 9g− 9 theorem (see [?], Theorem 10.7) guarantees that a marked hyper-
bolic structure X ∈ Tg is completely determined by its simple marked length spectrum, i.e.,
by the function which assigns to every simple closed curve γ on Sg the length ℓγ(X) of its
unique geodesic representative in X. Using this theorem and Dehn-Thurston coordinates,
show that the kernel of the action of Modg on Tg is equal to the kernel of the action of Modg

on the set of simple closed curves on Sg.

Solution. Step 1. Definition of the Two Actions.
The mapping class group Modg acts on Teichmüller space Tg by changing the markings. It
also acts on the set of simple closed curves on Sg by taking the isotopy class of a curve γ to
that of ϕ(γ) for ϕ ∈ Modg.

Step 2. Definition of the Kernels.
The kernel of the action on Tg consists of those ϕ ∈ Modg such that ϕ · X = X for every
X ∈ Tg. The kernel of the action on simple closed curves consists of those ϕ ∈ Modg for
which ϕ(γ) is isotopic to γ for every simple closed curve γ on Sg.

Step 3. The 9g − 9 Theorem.
By the 9g − 9 theorem, the marked hyperbolic structure X ∈ Tg is uniquely determined by
the function γ 7→ ℓγ(X) for all simple closed curves γ. That is, if two marked structures
have the same lengths for every simple closed curve, then they are the same point in Tg.

Step 4. Implication for the Action on Tg.
Suppose ϕ ∈ Modg acts trivially on Tg, meaning ϕ ·X = X for all X ∈ Tg.

Step 5. Effect on Length Spectra.
Then, for every X ∈ Tg and every simple closed curve γ, we have

ℓγ(X) = ℓγ(ϕ ·X).
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Step 6. Relating the Actions.
But the action of ϕ on X changes the marking, so the geodesic representative of γ in ϕ ·X
is the same as that of ϕ(γ) in X. Thus,

ℓγ(X) = ℓϕ(γ)(X) for all γ and all X.

Step 7. Consequence for Simple Closed Curves.
Since the length function distinguishes hyperbolic structures (by the 9g − 9 theorem), the
equality ℓγ(X) = ℓϕ(γ)(X) for every X forces ϕ(γ) to be isotopic to γ.

Step 8. First Inclusion.
Thus, any ϕ ∈ Modg that acts trivially on Tg must also act trivially on the set of simple
closed curves. In symbols,

ker
(
Modg ↷ Tg

)
⊆ ker

(
Modg ↷ {simple closed curves}

)
.

Step 9. Conversely, Assume Trivial Action on Curves.
Now suppose ϕ ∈ Modg acts trivially on the set of simple closed curves; that is, for every
simple closed curve γ, ϕ(γ) is isotopic to γ.

Step 10. Effect on the Length Spectrum.
Then, for any X ∈ Tg, the geodesic representative of γ in X is the same as that of ϕ(γ).
Hence, ℓγ(X) = ℓϕ(γ)(X) for all simple closed curves γ.

Step 11. Determining X from the Length Spectrum.
By the 9g − 9 theorem, the entire hyperbolic structure X is determined by the collection of
lengths {ℓγ(X) : γ a simple closed curve}.

Step 12. Triviality of the Action on Tg.
Therefore, if ϕ preserves the length of every simple closed curve, it must preserve X itself;
that is,

ϕ ·X = X for all X ∈ Tg.

Step 13. Second Inclusion.
This shows that

ker
(
Modg ↷ {simple closed curves}

)
⊆ ker

(
Modg ↷ Tg

)
.

Step 14. Equality of Kernels.
Combining Steps 8 and 13, we deduce that the kernel of the action of Modg on Tg is exactly
equal to the kernel of the action on the set of simple closed curves.

Step 15. Role of Dehn-Thurston Coordinates.
Recall that Dehn-Thurston coordinates provide a complete parametrization of the set of
simple closed curves on Sg.

Step 16. Mapping Class Group Action on Coordinates.
The action of Modg on simple closed curves is equivalent to its action on their Dehn-Thurston
coordinates.
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Step 17. Preservation Implies Triviality.
If a mapping class ϕ fixes every simple closed curve (up to isotopy), then it must fix all their
Dehn-Thurston coordinates.

Step 18. Determination of Hyperbolic Structure.
Since the hyperbolic structure X ∈ Tg is uniquely determined by its simple length spectrum,
which in turn is encoded in the Dehn-Thurston coordinates, ϕ must also fix X.

Step 19. Consistency of the Two Actions.
Thus, the action of Modg on Tg and on the set of simple closed curves have the same kernel.

Step 20. Final Conclusion.
We conclude that

ker
(
Modg ↷ Tg

)
= ker

(
Modg ↷ {simple closed curves on Sg}

)
,

which is what we wanted to show.
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